Skip to main content

Advertisement

Log in

Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Wastewater can be recycled in agricultural soil as fertilizer to increase crop yields. However, adding wastewater induces sometimes ecotoxicological issues such as pollution by toxic compounds, which may lead to the loss of arable land. Bioenergy crops such as Miscanthus × giganteus have been tested to rehabilitate polluted soils, but the impact of Miscanthus on soil microbes is unknown. Here, we evaluated the effects of Miscanthus cropping on bacterial and fungal taxonomic composition in a wastewater-contaminated soil using synchronic and diachronic evaluation strategies. A 3-year field experiment close to Paris was set up on an agricultural site irrigated by raw wastewater for more than one century, thus resulting in strong metal and organic contamination. Soil microbial taxonomic composition was characterized by direct analysis of soil DNA using metagenomic tools such as 454 pyrosequencing of ribosomal genes. Our results demonstrate that Miscanthus cropping stimulates specific populations of bacteria such as Rhizobiales, increased by 1.4 in relative abundance, Nistrospira (x1.5), Azospira (x2), and Gemmatimonas (x2), and fungi: Glomeromycota (x3) and Mortierella (x1.5) for fungi. Noteworthy, these microbial genera are known to be strongly involved in plant symbiosis, organic matter mineralization, and nutrient cycling. Overall our findings show that Miscanthus cropping enhances regeneration of soil microbiological functions and services in polluted soil by stimulating populations beneficial for soil fertility and crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272. doi:10.1046/j.1469-8137.2003.00885.x

    Article  CAS  Google Scholar 

  • Bååth E, Díaz-Raviña M, Frostegård A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    Google Scholar 

  • Baldrian P, Snajdr J (2006) Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme Microb Technol 39:1023–1029. doi:10.1016/j.enzmictec.2006.02.011

    Article  CAS  Google Scholar 

  • Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V (2011) Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125. doi:10.1007/s11104-010-0324-3

    Article  CAS  Google Scholar 

  • Bottomley PJ, Cheng HH, Strain SR (1994) Genetic structure and symbiotic characteristics of a Bradyrhizobium population recovered from a pasture soil. Appl Environ Microbiol 60:1754–1761

    CAS  Google Scholar 

  • Bourgeois E, Dequiedt S, Lelièvre M, van Oort F, Lamy I, Maron PA, Ranjard L (2015) Positive effect of the Miscanthus bioenergy crop on microbial diversity in wastewater-contaminated soil. Environ Chem Lett. doi:10.1007/s10311-015-0531-5

    Google Scholar 

  • Chauvat M, Perez G, Hedde M, Lamy I (2014) Establishment of bioenergy crops on metal contaminated soils stimulates belowground fauna. Biomass Bioenergy 62:207–211. doi:10.1016/j.biombioe.2014.01.042

    Article  CAS  Google Scholar 

  • Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68:245–253. doi:10.1128/AEM.68.1.245-253.2002

    Article  CAS  Google Scholar 

  • Evangelou MWH, Conesa HM, Robinson BH, Schulin R (2012) Biomass production on trace element-contaminated land: a review. Environ Eng Sci 29:823–839. doi:10.1089/ees.2011.0428

    Article  CAS  Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, Hollender J (2008) Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58:2215–2223. doi:10.1099/ijs.0.65342-0

    Article  CAS  Google Scholar 

  • Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313. doi:10.1111/j.1462-2920.2004.00695.x

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296. doi:10.1038/nature06592

    Article  CAS  Google Scholar 

  • Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 27:2835–2844. doi:10.1007/s11274-011-0762-y

    Article  CAS  Google Scholar 

  • Hedde M, van Oort F, Renouf E, Thénard J, Lamy I (2013) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl Soil Ecol 66:29–39. doi:10.1016/j.apsoil.2013.01.012

    Article  Google Scholar 

  • Hidri Y, Bouziri L, Maron PA, Anane M, Jedidi N, Hassan A, Ranjard L (2010) Soil DNA evidence for altered microbial diversity after long-term application of municipal wastewater. Agron Sustain Dev 30:423–431. doi:10.1051/agro/2009038

    Article  CAS  Google Scholar 

  • Hong C, Si Y, Xing Y, Li Y (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res. doi:10.1007/s11356-015-4186-3

    Google Scholar 

  • http://www.agreste.agriculture.gouv.fr/IMG/pdf/primeur292.pdf

  • Iram S, Ahmad I, Stuben D (2009) Analysis of mines and contaminated agricultural soil samples for fungal diversity and tolerance to heavy metals. Pak J Bot 41:885–895

    CAS  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306. doi:10.1007/BF00335958

    Article  CAS  Google Scholar 

  • Lamy I, van Oort F, Dère C, Baize D (2006) Use of major- and trace-element correlations to assess metal migration in sandy Luvisols irrigated with wastewater. Eur J Soil Sci 57:731–740. doi:10.1111/j.1365-2389.2005.00765.x

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. doi:10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  • Lienhard P, Terrat S, Chemidlin Prévost-Bouré N, Nowak V, Régnier T, Sayphoummie S, Panyasiri K, Tivet F, Mathieu O, Levêque J, Maron PA, Ranjard L (2014) Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron Sustain Dev 34:525–533. doi:10.1007/s13593-013-0162-9

    Article  Google Scholar 

  • Pavel P-B, Puschenreiter M, Wenzel WW, Diacu E, Horia Barbu C (2014) Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. Sci Total Environ 479–480:125–131. doi:10.1016/j.scitotenv.2014.01.097

    Article  Google Scholar 

  • Ranjard L, Lignier L, Chaussod R (2006) Cumulative effects of short-term polymetal contamination on soil bacterial community structure. Appl Environ Microbiol 72:1684–1687. doi:10.1128/AEM.72.2.1684-1687.2006

    Article  CAS  Google Scholar 

  • Rosenzweig N, Bradeen JM, Tu ZJ, McKay SJ, Kinkel LL (2013) Rhizosphere bacterial communities associated with long-lived perennial prairie plants vary in diversity, composition, and structure. Can J Microbiol 59:494–502. doi:10.1139/cjm-2012-0661

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  Google Scholar 

  • Tamtam F, van Oort F, LeBot B, Dinh Mompelat S, Chevreuil M, Lamy I, Thiry M (2011) Assessing antibiotic contamination in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci Total Environ 409:540–547. doi:10.1016/j.scitotenv.2010.10.033

    Article  CAS  Google Scholar 

  • Tardy V, Chabbi A, Charrier X, de Berranger C, Reignier T, Dequiedt S, Faivre-Primot C, Terrat S, Ranjard L, Maron PA (2015) Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One 10:e0130672

    Article  Google Scholar 

  • Terrat S, Christen R, Dequiedt S, Lelièvre M, Nowak V, Regnier T, Bachar D, Plassart P, Wincker P, Jolivet C, Bispo A, Lemanceau P, Maron PA, Mougel C, Ranjard L (2012) Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. Microb Biotechnol 5:135–141. doi:10.1111/j.1751-7915.2011.00307.x

    Article  CAS  Google Scholar 

  • van Oort F, Jongmans AG, Lamy I, Baize D, Chevallier P (2008) Impacts of long-term waste-water irrigation on the development of sandy Luvisols: consequences for metal pollutant distributions. Eur J Soil Sci 59:925–938. doi:10.1111/j.1365-2389.2008.01047.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by an ANR-08-CESA-012 grant for the Resacor project from the French National Research Agency. The authors thank B Brouant (Chambre Interdépartementale d’Agriculture d’Ile de France) for the setup of Miscanthus plots, Mr Leconte (farmer) for the setup of other cropping systems and providing easy access, and J.P. Pétraud (INRA, UMR 1402) for marking and maintenance of the experimental site. This work, through the involvement of technical facilities of the GenoSol platform of the infrastructure ANAEE, France, received a grant from the French state through the National Agency for Research under the program “Investments for the Future” (reference ANR-11-INBS- 0001), as well as a grant from the Regional Council of Burgundy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Ranjard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgeois, E., Dequiedt, S., Lelièvre, M. et al. Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ Chem Lett 13, 503–511 (2015). https://doi.org/10.1007/s10311-015-0532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0532-4

Keywords

Navigation