Skip to main content

Advertisement

Log in

Conservation of stony materials in the built environment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Materials in the built environment are exposed to several agents that promote alteration processes resulting in features that might be considered detrimental of its value. There are diverse possible intervention measures that might, however, have unwanted side effects. Here are reviewed the main issues related to the struggle against these alteration processes, from the consideration of the intervention criteria to strategic considerations on the organisation of the intervention that must include temporal and spatial features of alteration processes, as well as possible interventions on the surroundings of the materials and in the materials, including its replacement. The long-term effectiveness of these interventions is linked with the global strategy namely in relation to the conditions that promote alteration processes. Some sustainability questions related to the intervention operations are also considered such as the use of toxic substances and the consumption of resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Achal V, Mukherjee A, Reddy MS (2010) Effect of calcifying bacteria on permeation properties ofconcrete structures. J Ind Microbiol Biotechnol 38:1229–1234. doi:10.1007/s10295-010-0901-8

    Article  CAS  Google Scholar 

  • Afifi HAM (2012) Comparative efficacy of some plant extracts against fungal deterioration of stucco ornaments in the mihrab of Mostafa Pasha Ribate, Cairo Egypt. Am J Biochem Mol Biol 2:40–47. doi:10.3923/ajbmb.2012.40.47

    Article  Google Scholar 

  • Ahmad AG, Rahman HFA (2010) Treatment of salt attack and rising damp in heritage buildings in Penang, Malaysia. J Constr Dev Ctries 15:93–113. http://web.usm.my/jcdc/input/JCDC%20Vol%2015%281%29/JCDC%20Vol.%2015%20%281%29%20ART%205%20%2893-113%29.pdf

  • Aitken MJ (1985) Thermoluminescence dating. Academic, London

    Google Scholar 

  • Alessandrini G, Aglietto M, Castelvetro V, Ciardelli F, Peruzzi R, Toniolo L (2000) Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as waterrepellent coating materials for stone. J Appl Polym Sci 76:962–977. doi:10.1002/(SICI)1097-4628(20000509)76:6<962:AID-APP24>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Alfano G, Chiancarella C, Cirillo E, Fato I, Martellotta F (2006) Long-term performance of chemical damp-proof courses: twelve years of laboratory testing. Build Environ 41:1060–1069. doi:10.1016/j.buildenv.2005.04.017

    Article  Google Scholar 

  • Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65(7):1004–1011. doi:10.1016/j.ibiod.2011.07.010

    Article  CAS  Google Scholar 

  • Alvarez de Buergo Ballester M, Fort González R (2001) Basic methodology for the assessment and selection of water-repellent treatments applied on carbonatic materials. Prog Org Coat 43(4):258–266. doi:10.1016/S0300-9440(01)00204-1

    Article  CAS  Google Scholar 

  • Alves C (2010) “White” crusts on recent buildings. Mater Sci Forum 636–637:1300–1305. doi:10.4028/www.scientific.net/MSF.636-637.1300

    Article  CAS  Google Scholar 

  • Alves C, Sanjurjo-Sánchez J (2015) Maintenance and conservation of materials in the built environment. In: Lichtfouse E et al. (eds) Pollutants in buildings, water and living organisms, environmental chemistry for a sustainable world 7. doi:10.1007/978-3-319-19276-5_1

  • Anne S, Rozenbaum O, Andreazza P, Rouet J-L (2010) Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique. Constr Build Mater 24(6):1036–1042. doi:10.1016/j.conbuildmat.2009.11.014

    Article  Google Scholar 

  • Appelbaum B (1987) Criteria for treatment: reversibility. J Am Inst Conserv 26:65–73

    Article  Google Scholar 

  • Arnold A, Zehnder K (1991) Monitoring wall paintings affected by soluble salts. The conservation of wall paintings. Getty Conservation Institute, pp 103–135. http://getty.edu/conservation/publications/pdf_publications/wall_paintings.pdf

  • Baglioni P, Giorgi R (2006) Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2(4):293. doi:10.1039/b516442g

    Article  CAS  Google Scholar 

  • Barrionuevo MRE, Gaylarde CC (2011) Biocide-containing varnish for the protection of sandstone: comparison of formulations and laboratory test methods. Curr Microbiol 62(6):1671–1676. doi:10.1007/s00284-011-9912-6

    Article  CAS  Google Scholar 

  • Bastian F, Alabouvette C, Jurado V, Saiz-Jimenez C (2009) Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 96(7):863–868. doi:10.1007/s00114-009-0540-y

    Article  CAS  Google Scholar 

  • Berlucchi N, Ginanni Corradini R, Bonomi R, Bemporad E, Tisato M (2000) “La Fenice” Theatre—Foyer and Apollinee rooms—Consolidation of fire-damaged stucco and marmorino decorations by means of combined applications of ion-exchange resins and barium hydroxide. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 23–32, 19–24 June

  • Bester K, Lamani X (2010) Determination of biocides as well as some biocide metabolites from facade run-off waters by solid phase extraction and high performance liquid chromatographic separation and tandem mass spectrometry detection. J Chromatogr A 1217(32):5204–5214. doi:10.1016/j.chroma.2010.06.020

    Article  CAS  Google Scholar 

  • Blain S (2010) An application of luminescence dating to building archaeology: the study of ceramic building materials in early medieval churches in south-eastern England and northwestern France. Arqueol Arquit 7:43–66. doi:10.3989/arqarqt.2010.10004

    Article  Google Scholar 

  • Blain S, Bailiff IK, Guibert P, Bouvier A, Bayle M (2010) An intercomparison study of luminescence dating protocols and techniques applied to medieval brick samples from Normandy (France). Quat Geochronol 5(2–3):311–316. doi:10.1016/j.quageo.2009.02.016

    Article  Google Scholar 

  • Blázquez F, García-Vallès M, Krumbein W, Sterflinger K, Vendrell-Saz M (1997) Microstromatolitic deposits on granitic monuments: development and decay. Eur J Mineral 9:889–901

    Article  Google Scholar 

  • Bøtter-Jensen L, Solongo S, Murray AS, Banerjee D, Jungner H (2000) Using the OSL single aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. Radiat Meas 32(5–6):841–845. doi:10.1016/S1350-4487(99)00278-4

    Article  Google Scholar 

  • Bourgès A, Vergès-Belmin V (2010) Application of fresh mortar tests to poultices used for the desalination of historical masonry. Mater Struct 44(7):1233–1240. doi:10.1617/s11527-010-9695-4

    Article  CAS  Google Scholar 

  • Brimblecombe P, Grossi CM (2005) Aesthetic thresholds and blackening of stone buildings. Sci Total Environ 349(1–3):175–189. doi:10.1016/j.scitotenv.2005.01.009

    Article  CAS  Google Scholar 

  • Bromblet P, Labouré M, Orial G (2003) Diversity of the cleaning procedures including laser for the restoration of carved portals in France over the last 10 years. J Cult Herit 4:17–26. doi:10.1016/S1296-2074(02)01222-0

    Article  Google Scholar 

  • Burkhardt M, Zuleeg S, Vonbank R, Bester K, Carmeliet J, Boller M, Wangler T (2012) Leachingof biocides from façades under natural weather conditions. Environ Sci Technol 46(10):5497–5503. doi:10.1021/es2040009

    Article  CAS  Google Scholar 

  • Cámara B, De los Ríos A, Urizal M, de Buergo MA, Varas MJ, Fort R, Ascaso C (2011) Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments. Microb Ecol 62(2):299–313. doi:10.1007/s00248-011-9815-x

    Article  CAS  Google Scholar 

  • Caple C (2000) Conservation skills: judgement, method and decision making. Routledge, Oxon

    Google Scholar 

  • Caple C (2004) Towards a benign reburial context: the chemistry of the burial environment. Conserv Manag Archaeol Sites 6(3):155–165. doi:10.1179/135050304793137801

    Article  Google Scholar 

  • Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73(17):5671–5675. doi:10.1128/AEM.00394-07

    Article  CAS  Google Scholar 

  • Cardiano P (2008) Hydrophobic properties of new epoxy-silica hybrids. J Appl Polym Sci 108(5):3380–3387. doi:10.1002/app.27985

    Article  CAS  Google Scholar 

  • Cardiano P, Sergi S, Lazzari M, Piraino P (2002) Epoxy–silica polymers as restoration materials. Polymer 43(25):6635–6640. doi:10.1016/S0032-3861(02)00677-8

    Article  CAS  Google Scholar 

  • Cardiano P, Ponterio RC, Sergi S, Lo Schiavo S, Piraino P (2005) Epoxy-silica polymers as stone conservation materials. Polymer 46(6):1857–1864. doi:10.1016/j.polymer.2005.01.002

    Article  CAS  Google Scholar 

  • Carmona-Quiroga PM, Martínez-Ramírez S, Sánchez-Cortés S, Oujja M, Castillejo M, BlancoVarela MT (2010) Effectiveness of antigraffiti treatments in connection with penetration depth determined by different techniques. J Cult Herit 11(3):297–303. doi:10.1016/j.culher.2009.09.006

    Article  Google Scholar 

  • Casadio F, Colombo C, Toniolo L, Fassina V (2000) Detaching methodology for fresco paintings. The case study of a renaissance cycle. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 739–748, 19–24 June

  • Castelvetro V, Aglietto M, Ciardelli F, Chiantore O, Lazzari M, Toniolo L (2002) Structure control, coating properties, and durability of fluorinated acrylic-based polymers. J Coat Technol 74:57–66. doi:10.1007/BF02697984

    Article  CAS  Google Scholar 

  • Chin IR, Behie B, Farny J, Behie W, Dean SW (2010) Efflorescence: evaluation of published test methods for brick and efforts to develop a Masonry assembly test method. J ASTM Int 7(5):102744. doi:10.1520/JAI102744

    Article  CAS  Google Scholar 

  • Chunxiang Q, Jianyun W, Ruixing W, Liang C (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng C 29(4):1273–1280. doi:10.1016/j.msec.2008.10.025

    Article  CAS  Google Scholar 

  • Clifton JR (1980) Stone consolidating materials: a status report. National Bureau of Standards Technical Note 1118. http://cool.conservation-us.org/byauth/clifton/stone/

  • Cnudde V, Cnudde JP, Dupuis C, Jacobs PJS (2004) X-ray micro-CT used for the localization of water repellents and consolidants inside natural building stones. Mater Charact 53(2–4):259–271. doi:10.1016/j.matchar.2004.08.011

    Article  CAS  Google Scholar 

  • Coutu S, Rota C, Rossi L, Barry DA (2012) Modelling city-scale facade leaching of biocide by rainfall. Water Res 46(11):3525–3534. doi:10.1016/j.watres.2012.03.064

    Article  CAS  Google Scholar 

  • Cultrone G, Sebastián E (2008) Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials. Environ Geol 56(3–4):729–740. doi:10.1007/s00254-008-1332-y

    Article  CAS  Google Scholar 

  • D’Arienzo L, Scarfato P, Incarnato L (2008) New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. J Cult Herit 9(3):253–260. doi:10.1016/j.culher.2008.03.002

    Article  Google Scholar 

  • De Ferri L, Lottici PP, Lorenzi A, Montenero A, Salvioli-Mariani E (2011) Study of silica nanoparticles—polysiloxane hydrophobic treatments for stone-based monument protection. J Cult Herit 12(4):356–363. doi:10.1016/j.culher.2011.02.006

    Article  Google Scholar 

  • De los Ríos A, PérezOrtega S, Wierzchos J, Ascaso C (2012) Differential effects of biocide treatments on saxicolous communities: case study of the Segovia cathedral cloister (Spain). Int Biodeterior Biodegrad 67:64–72. doi:10.1016/j.ibiod.2011.10.010

    Article  Google Scholar 

  • De Muynck W, Cox K, Belie ND, Verstraete W (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22(5):875–885. doi:10.1016/j.conbuildmat.2006.12.011

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi:10.1016/j.ecoleng.2009.02.006

    Article  Google Scholar 

  • De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77(19):6808–6820. doi:10.1128/AEM.00219-11

    Article  CAS  Google Scholar 

  • Del Monte M, Sabbioni C, Zappia G (1987) The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ 67:17–39. doi:10.1016/0048-9697(87)90063-5

    Article  Google Scholar 

  • DeWitte E, Dupas M, Peters S (1996) Dessalement de voûtes d’un fumoir de harengs. In: Le Dessalement des materiaux poreux, SFIIC editions, Paris, pp 177–190

  • Dick J, Windt W, Graef B, Saveyn H, Meeren P, Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi:10.1007/s10532-005-9006-x

    Article  CAS  Google Scholar 

  • Dickson E, Baker JL, Hoornweg D, Asmita T (2012) Urban risk assessments: an approach for understanding disaster and climate risk in cities. The World Bank Publications, Washington,DC. doi:10.1596/978-0-8213-8962-1. http://elibrary.worldbank.org/content/book/9780821389621

  • Ditaranto N, Loperfido S, Werf I, Mangone A, Cioffi N, Sabbatini L (2010) Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment. Anal Bioanal Chem 399(1):473–481. doi:10.1007/s00216-010-4301-8

    Article  CAS  Google Scholar 

  • Doehne E, Price CA (2010) Stone conservation. An overview of current. Research, 2nd edn. The Getty Conservation Institute, Los Angeles. http://www.getty.edu/conservation/publications_resources/pdf_publications/stoneconservation.pdf

  • Doherty B, Pamplona M, Miliani C, Matteini M, Sgamellotti A, Brunetti B (2007) Durability of the artificial calcium oxalate protective on two Florentine monuments. J Cult Herit 8(2):186–192. doi:10.1016/j.culher.2006.12.002

    Article  Google Scholar 

  • Donovan DT (2011) Wells Cathedral: conservation of figure sculpture 1977–1986. Int J Archit Herit 5(6):586–612. doi:10.1080/15583051003754112

    Article  Google Scholar 

  • Dorn RI (1998) Rock coatings. Elsevier, Amsterdam

    Google Scholar 

  • Duran A, Robador MD, Perez-Rodriguez JL (2012) Degradation of two historic buildings in Northern Spain by formation of oxalate and sulphate-based compounds. Int J Archit Herit 6(3):342–358. doi:10.1080/15583058.2010.551447

    Article  Google Scholar 

  • Elert K, Rodriguez-Navarro C, Pardo ES, Hansen E, Cazalla O (2002) Lime mortars for the conservation of historic buildings. Stud Conserv 47:62–75. doi:10.2307/1506835

    Article  CAS  Google Scholar 

  • Esbert R, Grossi C, Rojo A, Alonso F, Montoto M, Ordaz J, Pérez de Andrés M, Escudero C, Barrera M, Sebastián E, Rodríguez-Navarro C, Elert K (2003) Application limits of Q-switched Nd: YAG laser irradiation for stone cleaning based on colour measurements. J Cult Herit 4:50–55. doi:10.1016/S1296-2074(02)01227-X

    Article  Google Scholar 

  • Fassina V, Favaro M, Naccari A, Pigo M (2002) Evaluation of compatibility and durability of a hydraulic lime-based plaster applied on brick wall masonry of historical buildings affected by rising damp phenomena. J Cult Herit 3(1):45–51. doi:10.1016/S1296-2074(02)01158-5

    Article  Google Scholar 

  • Feathers JK, Johnson J, Kembei SR (2008) Luminescence dating of monumental stone architecture at Chavín de Huántar, Perú. J Archaeol Method Theory 15(3):266–296. doi:10.1007/s10816-008-9053-9

    Article  Google Scholar 

  • Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2012) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Herit. doi:10.1016/j.culher.2012.09.004

    Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73(2):291–296. doi:10.1007/s00253-006-0599-8

    Article  CAS  Google Scholar 

  • Ferreira Pinto AP, Delgado Rodrigues J (2008) Stone consolidation: the role of treatment procedures. J Cult Herit 9:38–53. doi:10.1016/j.culher.2007.06.004

    Article  Google Scholar 

  • Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, Gómez-Bolea A, SaizJimenez C (2010) Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeterior Biodegrad 64(5):388–396. doi:10.1016/j.ibiod.2010.04.006

    Article  CAS  Google Scholar 

  • Fort R, López de Azcona MC, Mingarro F (2000) Cleaning of stone materials in the Cathedral de Valladolid (Spain). Mater Constr 50(258):37–50. doi:10.3989/mc.2000.v50.i258.408

    Article  CAS  Google Scholar 

  • García O, Malaga K (2012) Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J Cult Herit 13(1):77–82. doi:10.1016/j.culher.2011.07.004

    Article  Google Scholar 

  • Gaspar P, Hubbard C, McPhail D, Cummings A (2003) A topographical assessment and comparison of conservation cleaning treatments. J Cult Herit 4:294–302. doi:10.1016/S1296-2074(02)01211-6

    Article  Google Scholar 

  • Gauri LL, Parks L, Jaynes J, Atlas R (1992) Removal of sulphate-crust from marble using sulphate reducing bacteria. In: Webster RGM (ed) Stone cleaning and the nature, soiling and decay mechanisms of stone. Donhead Publishing, London, pp 160–165

    Google Scholar 

  • Geweely NSI, Afifi HAM (2011) Bioremediation of some deterioration products from sandstone of archeological karnak temple using stimulated irradiated alkalo-thermophilic purified microbial enzymes. Geomicrobiol J 28(1):56–67. doi:10.1080/01490451.2010.498296

    Article  CAS  Google Scholar 

  • Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35(10):1980–1983. doi:10.1016/j.cemconres.2005.03.005

    Article  CAS  Google Scholar 

  • Giorgi R, Dei L, Baglioni P (2000) A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud Conserv 45(3):154–161

    Article  CAS  Google Scholar 

  • Gioventù E, Lorenzi PF, Villa F, Sorlini C, Rizzi M, Cagnini A, Griffo A, Cappitelli F (2011) Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegrad 65(6):832–839. doi:10.1016/j.ibiod.2011.06.002

    Article  CAS  Google Scholar 

  • Gladis F, Eggert A, Karsten U, Schumann R (2010) Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling 26(1):89–101. doi:10.1080/08927010903278184

    Article  CAS  Google Scholar 

  • Goedicke C (2011) Dating mortar by optically stimulated luminescence: a feasibility study. Geochronometria 38(1):42–49. doi:10.2478/s13386-011-0002-0

    Article  CAS  Google Scholar 

  • Goudie AS, Viles HA (1997) Salt weathering hazards. Wiley, Chichester

    Google Scholar 

  • Graef B, Windt W, Dick J, Verstraete W, Belie N (2005) Cleaning of concrete fouled by lichens with the aid of Thiobacilli. Mater Struct 38(10):875–882. doi:10.1007/BF02482254

    Article  Google Scholar 

  • Grave J, Krage L, Lusis R, Vitina I (2011) Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral. IOP Conf Ser Mater Sci Eng 25:012004. doi:10.1088/1757-899X/25/1/012004

    Article  CAS  Google Scholar 

  • Grossi CM, Alonso FJ, Esbert RM, Rojo A (2007) Effect of laser cleaning on granite color. Color Res Appl 32(2):152–159. doi:10.1002/col.20299

    Article  Google Scholar 

  • Guidetti V, Uminski M (2000) Ion exchange resins for historic marble desulfatation and restoration. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 327–333, 19–24 June

  • Hammecker C (1995) The importance of the petrophysical properties and external factors in the stone decay on monuments. Pure appl Geophys 145(2):337–361. doi:10.1007/BF00880275

    Article  Google Scholar 

  • Heinemeier J, Ringbom A, Lindroos A, Sveinbjörnsdóttir AE (2010) Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171–204

    CAS  Google Scholar 

  • ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. http://www.international.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf

  • Izaguirre A, Lanas J, Álvarez JI (2009) Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars. Cem Concr Res 39(11):1095–1104. doi:10.1016/j.cemconres.2009.07.026

    Article  CAS  Google Scholar 

  • Jain M, Bøtter-Jensen L, Murray AS, Jungner H (2002) Retrospective dosimetry: dose evaluation using unheated and heated quartz from a radioactive waste storage building. Radiat Prot Dosim 101(1–4):525–530

    Article  CAS  Google Scholar 

  • Jeanneau F (1996) Le dessalement de la façade de l’église Notre-Dame-laGrande de Poitiers: Le contexte général du chantier de restauration. In: Le dessalement des matériaux poreux, SFIIC éditions, Paris, pp. 199–206.

  • Jimenez-Lopez C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi:10.1016/j.chemosphere.2007.02.044

    Article  CAS  Google Scholar 

  • Jonkers HM (2011) Bacteria-based self-healing concrete. Heron 56(1–2):5–16. http://repository.tudelft.nl/assets/uuid:8326f8b3-a290-4bc5-941dc2577740fb96/heron_jonkers_56-1.pdf

  • Khamova TV, Shilova OA, Vlasov DY, Ryabusheva YV, Mikhal’chuk VM, Ivanov VK, FrankKamenetskaya OV, Marugin AM, Dolmatov VY (2012) Bioactive coatings based on nanodiamond-modified epoxy siloxane sols for stone materials. Inorg Mater 48(7):702–708. doi:10.1134/S0020168512060052

    Article  CAS  Google Scholar 

  • Kim EK, Won J, Do J, Kim SD, Kang YS (2009) Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit 10(2):214–221. doi:10.1016/j.culher.2008.07.008

    Article  Google Scholar 

  • Kirkwood N (2004) Weathering and durability in landscape architecture: fundamentals, practices, and case studies. Wiley, Hoboken

    Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74(1):186–191. doi:10.1016/j.porgcoat.2011.12.008

    Article  CAS  Google Scholar 

  • Lanterna G, Matteini M (2000) Laser cleaning of stone artefacts: a substitute or alternative method? J Cult Herit 1:S29–S35. doi:10.1016/S1296-2074(00)00136-9

    Article  Google Scholar 

  • Lauffenburger JA, Grissom CA, Charola AE (1992) Changes in gloss of marble surfaces as a result of methylcellulose poulticing. Stud Conserv 37:155–164

    Google Scholar 

  • Lazzarini L, Borrelli E, Bouabdelli M, Antonelli F (2007) Insight into the conservation problems of the stone building “Bab Agnaou”, a XII cent. monumental gate in Marrakech (Morocco). J Cult Herit 8:315–322. doi:10.1016/j.culher.2007.02.002

    Article  Google Scholar 

  • Li PH, Jin B (2012) Healing of cracked concrete by sporosarcina pasteurii mediated carbonate deposition. Appl Mech Mater 164:103–106. doi:10.4028/www.scientific.net/AMM.164.103

    Article  CAS  Google Scholar 

  • Licchelli M, Marzolla SJ, Poggi A, Zanchi C (2011) Crosslinked fluorinated polyurethanes for the protection of stone surfaces from graffiti. J Cult Herit 12(1):34–43. doi:10.1016/j.culher.2010.07.002

    Article  Google Scholar 

  • Lopez-Arce P, Doehne E, Greenshields J, Benavente D, Young D (2008) Treatment of rising damp and salt decay: the historic masonry buildings of Adelaide, South Australia. Mater Struct 42(6):827–848. doi:10.1617/s11527-008-9427-1

    Article  CAS  Google Scholar 

  • López-Arce P, Gomez-Villalba LS, Pinho L, Fernández-Valle ME, de Buergo MÁ, Fort R (2010) Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater Charact 61(2):168–184. doi:10.1016/j.matchar.2009.11.007

    Article  CAS  Google Scholar 

  • López-Arce P, Gómez-Villalba LS, Martínez-Ramírez S, Álvarez de Buergo M, Fort R (2011) Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder Technol 205(1–3):263–269. doi:10.1016/j.powtec.2010.09.026

    Article  CAS  Google Scholar 

  • Lu Z, Zhou X (2000) The waterproofing characteristics of polymer sodium carboxymethylcellulose. Cem Concr Res 30(2):227–231. doi:10.1016/S0008-8846(99)00233-1

    Article  CAS  Google Scholar 

  • Lu Z, Zhou X, Zhang J (2004) Study on the performance of a new type of water-repellent admixture for cement mortar. Cem Concr Res 34(11):2015–2019. doi:10.1016/j.cemconres.2004.02.019

    Article  CAS  Google Scholar 

  • Lubelli B, van Hees RPJ (2007) Effectiveness of crystallization inhibitors in preventing salt damage in building materials. J Cult Herit 8(3):223–234. doi:10.1016/j.culher.2007.06.001

    Article  Google Scholar 

  • Lubelli B, van Hees RPJ, Groot CJWP (2006) Sodium chloride crystallization in a “salt transporting” restoration plaster. Cem Concr Res 36(8):1467–1474. doi:10.1016/j.cemconres.2006.03.027

    Article  CAS  Google Scholar 

  • Lubelli B, Nijland TG, van Hees RPJ, Hacquebord A (2010) Effect of mixed in crystallization inhibitor on resistance of lime–cement mortar against NaCl crystallization. Constr Build Mater 24(12):2466–2472. doi:10.1016/j.conbuildmat.2010.06.010

    Article  Google Scholar 

  • Ludovico-Marques M, Chastre C, Vasconcelos G (2012) Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Constr Build Mater 28(1):372–381. doi:10.1016/j.conbuildmat.2011.08.083

    Article  Google Scholar 

  • Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61. doi:10.1016/j.ibiod.2011.12.010

    Article  CAS  Google Scholar 

  • MacMullen J, Zhang Z, Radulovic J, Herodotou C, Totomis M, Dhakal HN, Bennett N (2012) Titanium dioxide and zinc oxide nano-particulate enhanced oil-in-water (O/W) façade emulsions for improved masonry thermal insulation and protection. Energy Build 52:86–92. doi:10.1016/j.enbuild.2012.05.027

    Article  Google Scholar 

  • Manoudis PN, Tsakalof A, Karapanagiotis I, Zuburtikudis I, Panayiotou C (2009) Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf Coat Technol 203(10–11):1322–1328. doi:10.1016/j.surfcoat.2008.10.041

    Article  CAS  Google Scholar 

  • Maravelaki-Kalaitzaki P (2007) Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem Concr Res 37(2):283–290. doi:10.1016/j.cemconres.2006.11.007

    Article  CAS  Google Scholar 

  • Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N, Agioutantis Z, Maurigiannakis S, Korakaki D (2008) A comparative study of porous limestones treated with silicon-based strengthening agents. Prog Org Coat 62(1):49–60. doi:10.1016/j.porgcoat.2007.09.020

    Article  CAS  Google Scholar 

  • Marczak J, Koss A, Targowski P, Góra M, Strzelec M, Sarzyński A, Skrzeczanowski W, Ostrowski R, Rycyk A (2008) Characterization of laser cleaning of artworks. Sensors 8(10):6507–6548. doi:10.3390/s8106507

    Article  CAS  Google Scholar 

  • Matthews S, Bigaj-van Vliet A (2013) Conservation of concrete structures according to fib Model Code 2010. Struct Concr 14(4):362–377. doi:10.1002/suco.201300046

    Article  Google Scholar 

  • Matziaris K, Stefanidou M, Karagiannis G (2011) Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Prog Org Coat 72(1–2):181–192. doi:10.1016/j.porgcoat.2011.03.012

    Article  CAS  Google Scholar 

  • Maury A, De Belie N (2010) State of the art of TiO2 containing cementitious materials: selfcleaning properties. Mater Constr 60(298):33–50. doi:10.3989/mc.2010.48408

    Article  CAS  Google Scholar 

  • Mayer H (1998) Masonry protection with silanes, siloxanes and silicone resins. Surf Coat Int B Coat Trans 81(2):89–93. doi:10.1007/BF02692337

    Article  CAS  Google Scholar 

  • Messori M, Zannini P, Mairani A, Matteini M (2000) New proposals for the conservation-consolidation of stone and plasters: analytical characterization and trial applications of Ba aluminates. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 561–568, 19–24 June

  • Miliani C, Velo-Simpson ML, Scherer GW (2007) Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. J Cult Herit 8(1):1–6. doi:10.1016/j.culher.2006.10.002

    Article  Google Scholar 

  • Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary-rising salt pollution and granitic stone erosive decay in the parish church of Torre de Moncorvo (NE Portugal)-implications for conservation strategy. J Cult Herit 7(1):56–66. doi:10.1016/j.culher.2005.10.006

    Article  Google Scholar 

  • Moropoulou A, Kefalonitou S (2002) Efficiency and countereffects of cleaning treatment on limestone surfaces—investigation on the Corfu Venetian Fortress. Build Environ 37(11):1181–1191. doi:10.1016/S0360-1323(01)00059-2

    Article  Google Scholar 

  • Moropoulou A, Tsiourva T, Bisbikou K, Tsantila V, Biscontin G, Longega G, Groggia M, Dalaklis E, Petritaki A (2002) Evaluation of cleaning procedures on the facades of the Bank of Greece historical building in the center of Athens. Build Environ 37(7):753–760. doi:10.1016/S0360-1323(01)00058-0

    Article  Google Scholar 

  • Mosquera MJ, Bejarano M, de la Rosa-Fox N, Esquivias L (2003) Producing crack-free colloid-polymer hybrid gels by tailoring porosity. Langmuir 19(3):951–957. doi:10.1021/la0265981

    Article  CAS  Google Scholar 

  • Mostafavi M, Leatherbarrow D (1993) On weathering: the life of buildings in time. MIT Press, Cambridge

    Google Scholar 

  • Mouton B (1996) Le dessalement du cellier de Loëns à Chartres (28). In: Le dessalement des materiaux poreux. SFIIC editions, Paris, pp 279–287

  • Muñoz-Viñas S (2005) Contemporary theory of conservation. Elsevier, Oxford

    Google Scholar 

  • Orellan J, Escadeillas G, Arliguie G (2004) Electrochemical chloride extraction: efficiency and side effects. Cem Concr Res 34(2):227–234. doi:10.1016/j.cemconres.2003.07.001

    Article  CAS  Google Scholar 

  • Ottosen LM, Christensen IV (2012) Electrokinetic desalination of sandstones for NaCl removal—test of different clay poultices at the electrodes. Electrochim Acta 86:192–202. doi:10.1016/j.electacta.2012.06.005

    Article  CAS  Google Scholar 

  • Palem P (1996) Essai d’extraction de sels par électrodialyse sur l’église Saint-Philibert de Dijon. Le dessalement des matériaux poreux. SFIIC édi-tions, Paris, pp 269–278

    Google Scholar 

  • Pan A, Chiussi S, González P, Serra J, León B (2011) Comparative evaluation of UV–vis–IR Nd:YAG laser cleaning of beeswax layers on granite substrates. Appl Surf Sci 257(13):5484–5490. doi:10.1016/j.apsusc.2010.12.068

    Article  CAS  Google Scholar 

  • Pavía S, Caro S (2006) Origin of films on monumental stone. Stud Conserv 51:177–188

    Google Scholar 

  • Paz-García JM, Johannesson B, Ottosen LM, Ribeiro AB, Rodríguez-Maroto JM (2013) Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochim Acta 89:436–444. doi:10.1016/j.electacta.2012.11.087

    Article  CAS  Google Scholar 

  • Peihao L, Wenjun Q (2011) Bioremediation of historic architectural heritages by Sporosarcina pasteurii. IEEE, pp 1084–1087. doi:10.1109/ICETCE.2011.5775264

  • Pel L, Sawdy A, Voronina V (2010) Physical principles and efficiency of salt extraction by poulticing. J Cult Herit 11(1):59–67. doi:10.1016/j.culher.2009.03.007

    Article  Google Scholar 

  • Perez-Monserrat EM, Varas MJ, Fort R, de Buergo MA (2011) Assessment of different methods for cleaning the limestone façades of the former Workers Hospital of Madrid, Spain. Stud Conserv 56(4):298–313. doi:10.1179/204705811X13159282692969

    Article  CAS  Google Scholar 

  • Peris Mora E (2007) Life cycle, sustainability and the transcendent quality of building materials. Build Environ 42(3):1329–1334. doi:10.1016/j.buildenv.2005.11.004

    Article  Google Scholar 

  • Pinna D, Salvadori B, Porcinai S (2011) Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr Build Mater 25(5):2723–2732. doi:10.1016/j.conbuildmat.2010.12.023

    Article  Google Scholar 

  • Pinna D, Salvadori B, Galeotti M (2012) Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci Total Environ 423:132–141. doi:10.1016/j.scitotenv.2012.02.012

    Article  CAS  Google Scholar 

  • Polder RB, Borsje H, De Vries H (2001) Prevention of reinforcement corrosion by hydrophobic treatment of concrete. Heron 46(4):227–238

    Google Scholar 

  • Pouli P, Oujja M, Castillejo M (2011) Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Appl Phys A 106(2):447–464. doi:10.1007/s00339-011-6696-2

    Article  CAS  Google Scholar 

  • Price CA (ed) (2000) An expert chemical model for determining the environmental conditions needed to prevent salt damage in porous materials, European Commission Research report no 11, Protection and conservation of European cultural heritage. Archetype Publications, London

    Google Scholar 

  • Quagliarini E, Bondioli F, Goffredo GB, Licciulli A, Munafò P (2012) Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit. doi:10.1016/j.culher.2012.02.006

    Google Scholar 

  • Rager G, Payre M, LeFevre L (1996) Mise au point d’une méthode de dessalement pour des sculptures du XIVe siècle en pierr polychromée. In: Le Dessalement des materiaux poreux, SFIIC editions, Paris, pp 241–256

  • Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1996) The use of microorganisms for the removal of nitrates and organic substances on artistic stoneworks. In: Riederer J (ed) Proceedings of the eighth international congress on deterioration and conservation of stone. Berlin, pp 1415–1420

  • Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98(1):73–83. doi:10.1111/j.1365-2672.2004.02429.x

    Article  CAS  Google Scholar 

  • Redaelli E, Bertolini L (2011) Electrochemical repair techniques in carbonated concrete. Part I: electrochemical realkalisation. J Appl Electrochem 41(7):817–827. doi:10.1007/s10800-011-0301-4

    Article  CAS  Google Scholar 

  • Rirsch E, Zhang Z (2010) Rising damp in masonry walls and the importance of mortar properties. Constr Build Mater 24(10):1815–1820. doi:10.1016/j.conbuildmat.2010.04.024

    Article  Google Scholar 

  • Rivas T, Alvarez E, Mosquera MJ, Alejano L, Taboada J (2010) Crystallization modifiers applied in granite desalination: the role of the stone pore structure. Constr Build Mater 24(5):766–776. doi:10.1016/j.conbuildmat.2009.10.031

    Article  Google Scholar 

  • Rodriguez-Navarro C, Linares-Fernandez L, Doehne E, Sebastian E (2002) Effects of ferrocyanide ions on NaCl crystallization in porous stone. J Cryst Growth 243(3–4):503–516. doi:10.1016/S0022-0248(02)01499-9

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193. doi:10.1128/AEM.69.4.2182-2193.2003

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñoz MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation. Appl Environ Microbiol 78:4017–4029. doi:10.1128/AEM.07044-11

    Article  CAS  Google Scholar 

  • Rörig-Dalgaard I (2013) Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes. Mater Struct 46(6):959–970. doi:10.1617/s11527-012-9946-7

    Article  CAS  Google Scholar 

  • Ruiz-Agudo E, Lubelli B, Sawdy A, Hees R, Price C, Rodriguez-Navarro C (2010) An integrated methodology for salt damage assessment and remediation: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci 63(7–8):1475–1486. doi:10.1007/s12665-010-0661-9

    Google Scholar 

  • Sánchez M, Alonso MC (2011) Electrochemical chloride removal in reinforced concrete structures: improvement of effectiveness by simultaneous migration of calcium nitrite. Constr Build Mater 25:873–878. doi:10.1016/j.conbuildmat.2010.06.099

    Article  Google Scholar 

  • Sanders JP, Brosnan DA, Farny J, Behie W, Dean SW (2010) Test method for determining the efflorescence potential of masonry materials based on soluble salt content. J ASTM Int 7(5):102725. doi:10.1520/JAI102725

    Article  CAS  Google Scholar 

  • Sanjurjo-Sánchez J, Alves C (2012a) Decay effects of pollutants on stony materials in the builtenvironment. Environ Chem Lett 10(2):131–143. doi:10.1007/s10311-011-0346-y

    Article  CAS  Google Scholar 

  • Sanjurjo-Sánchez J, Alves C (2012b) Pollutant-induced decay of building materials. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Springer, Dordrecht, pp 47–120. doi:10.1007/978-94-007-2439-6_2

  • Sanjurjo-Sánchez J, Vidal Romaní JR, Fernández Mosquera D, Alves CA (2008) Study of origin and composition of coatings in a monument built with granitic rocks, by SEM, XRD, XRF and DTA-TGA. X-Ray Spectrom 37(4):346–354. doi:10.1002/xrs.1019

    Article  CAS  Google Scholar 

  • Sanjurjo-Sánchez J, Alves CAS, Vidal Romaní JR, Fernández Mosquera D (2009) Origin of gypsum-rich coatings on historic buildings. Water Air Soil Pollut 204(1–4):53–68. doi:10.1007/s11270-009-0025-9

    Article  CAS  Google Scholar 

  • Sanjurjo-Sánchez J, Trindade MJ, Blanco-Rotea R, Benavides R, Fernández Mosquera D, Burbridge CI, Prudêncio MI, Dias MI (2010) Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain. J Archaeol Sci 37:2346–2351. doi:10.1016/j.jas.2010.04.008

    Article  Google Scholar 

  • Sanjurjo-Sánchez J, Vidal-Romaní JR, Alves C (2012) Comparative analysis of coatings on granitic substrates from urban and natural settings (NW Spain). Geomorphology 138(1):231–242. doi:10.1016/j.geomorph.2011.09.008

    Article  Google Scholar 

  • Sanjurjo-Sánchez J, Alves C, Lobarinhas D (2013) Estimating the age of lime mortars by luminescence to measure pollution rates. Mater Sci Forum 730–732:598–603. doi:10.4028/www.scientific.net/MSF.730-732.598

    Google Scholar 

  • Scarfato P, Di Maio L, Fariello ML, Russo P, Incarnato L (2012) Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement. Cem Concr Compos 34(3):297–305. doi:10.1016/j.cemconcomp.2011.11.006

    Article  CAS  Google Scholar 

  • Selwitz C, Doehne E (2002) The evaluation of crystallization modifiers for controlling salt damage to limestone. J Cult Herit 3(3):205–216. doi:10.1016/S1296-2074(02)01182-2

    Article  Google Scholar 

  • Setina J, Krage L, Svare J, Kirilova S (2009) Simulation of desalination processes using lime based mortars. Chem Technol 1:30–35. http://www.chemija.ctf.ktu.lt/zurnalas/pdf/50-06-Setina.pdf

  • Siano S, Salimbeni R (2010) Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach. Acc Chem Res 43(6):739–750. doi:10.1021/ar900190f

    Article  CAS  Google Scholar 

  • Siano S, Fabiani F, Pini R, Salimbeni R, Giamello M, Sabatini G (2000) Determination of damage thresholds to prevent side effects in laser cleaning of pliocene sandstone of Siena. J Cult Herit 1:S47–S53. doi:10.1016/S1296-2074(00)00194-1

    Article  Google Scholar 

  • Siano S, Giamello M, Bartoli L, Mencaglia A, Parfenov V, Salimbeni R (2008) Laser cleaning of stone by different laser pulse duration and wavelength. Laser Phys 18(1):27–36. doi:10.1134/S1054660X08010064

    Article  Google Scholar 

  • Siano S, Agresti J, Cacciari I, Ciofini D, Mascalchi M, Osticioli I, Mencaglia AA (2011) Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers. Appl Phys A 106(2):419–446. doi:10.1007/s00339-011-6690-8

    Article  CAS  Google Scholar 

  • Siedel H (1996) Experiences from desalting of tuffstone and sandstone monuments by compresses. In: Le Dessalement des materiaux poreux, SFIIC editions, Paris pp. 191–198

  • Siegesmund S, Snethlage R (2011) Stone in architecture: properties, durability. Springer, Berlin

    Book  Google Scholar 

  • Simon S, Herm C, Porst A, Pursche J (1996) Desalination and control of salt transport phenomena—experiences with compress renderings in the ring crypt of St. Emmeram, Regensburg. In: Le Dessalement des materiaux poreux, SFIIC editions, Paris, pp. 145–159

  • Stella G, Fontana D, Gueli AM, Troja SO (2013) Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 40(3):153–164. doi:10.2478/s13386-013-0107-8

    Article  CAS  Google Scholar 

  • Thickett D, Lee NJ, Bradley SM (2000) Assessment of the performance of silane treatments applied to Egyptian limestone sculptures displayed in a museum environment. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 503–511, 19–24 June

  • Toniolo L, Poli T, Castelvetro V, Manariti A, Chiantore O, Lazzari M (2002) Tailoring new fluorinated acrylic copolymers as protective coatings for marble. J Cult Herit 3(4):309–316. doi:10.1016/S1296-2074(02)01240-2

    Article  Google Scholar 

  • Torney C (2012) “Plastic” repair of natural stone in Scotland: perceptions and practice. Struct Surv 30(4):297–311. doi:10.1108/02630801211256643

    Article  Google Scholar 

  • Torraca G (1999) The scientist in conservation. Conserv GCI Newsl 14(3):8–11

    Google Scholar 

  • Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C (2007) Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit 8(1):69–72. doi:10.1016/j.culher.2006.06.007

    Article  Google Scholar 

  • Tulliani JM, Formia A, Sangermano M (2011) Organic-inorganic material for the consolidation of plaster. J Cult Herit 12(4):364–371. doi:10.1016/j.culher.2011.04.001

    Article  Google Scholar 

  • Twilley J, Leavengood D (2000) Scientific investigation and large scale sandstone treatments: The Washington State Legislative Building. In: Fassina V (ed) Proceedings of 9th international congress on deterioration and conservation of stone, Venice, vol 2, Elsevier Science, Amsterdam, pp 513–522, 19–24 June

  • Urones-Garrote E, López AJ, Ramil A, Otero-Díaz LC (2011) Microstructural study of the origin of color in Rosa Porriño granite and laser cleaning effects. Appl Phys A 104(1):95–101. doi:10.1007/s00339-011-6344-x

    Article  CAS  Google Scholar 

  • Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256(22):6550–6563. doi:10.1016/j.apsusc.2010.04.046

    Article  CAS  Google Scholar 

  • Valentini F, Diamanti A, Carbone M, Bauer EM, Palleschi G (2012) New cleaning strategies based on carbon nanomaterials applied to the deteriorated marble surfaces: a comparative study with enzyme based treatments. Appl Surf Sci 258(16):5965–5980. doi:10.1016/j.apsusc.2012.01.076

    Article  CAS  Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166. doi:10.1016/j.cemconres.2009.08.025

    Article  CAS  Google Scholar 

  • Vendrell-Saz M, Alarcón S, Molera J, García-Vallés M (1996) Dating ancient lime mortars by geochemical and mineralogical analysis. Archaeometry 38(1):143–149. doi:10.1111/j.1475-4754.1996.tb00767.x

    Article  CAS  Google Scholar 

  • Vergès-Belmin V (1996) Le dessalement de la façade de l’eglise Notre-Dame-la-Grande de Poitiers: Contrôles d’eficacité. In: Le Dessalement des materiaux poreux, SFIIC editions, Paris, pp. 219-232

  • Vergès-Belmin V, Dignard C (2003) Laser yellowing: myth or reality? J Cult Herit 4:238–244. doi:10.1016/S1296-2074(02)01203-7

    Article  Google Scholar 

  • Vergès-Belmin V, Labouré M (2007) Poultices as a way to eliminate the yellowing effect linked to limestone laser cleaning. In: Nimmrichter J, Kautek W, Schreiner M (eds) Lasers in the conservation of artworks, vol 116. Springer, Berlin, pp 115–124

    Chapter  Google Scholar 

  • Vergès-Belmin V, Siedel H (2005) Desalination of masonries and monumental sculptures by poulticing: a review. Restoration of buildings and monuments. Bauinstandsetz Baudenkmalpflege 11:391–408

    Google Scholar 

  • Vergès-Belmin V, Sawdy Heritage A, Bourgès A (2011) Powdered cellulose poultices in stone and wall painting conservation—myths and realities. Stud Conserv 56(4):281–297

    Article  CAS  Google Scholar 

  • Vicini S, Margutti S, Princi E, Moggi G, Pedemonte E (2002) In situ copolymerization for the consolidation of stone artefacts. Macromol Chem Phys 203(10–11):1413–1419. doi:10.1002/1521-3935(200207)203:10/11<1413:AID-MACP1413>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Vieweger T, Groux D, Labouré M (1996) Le dessalement de la façade de l’eglise Notre-Dame-laGrande de Poitiers: méthode et applications aux contraintes de chantier. In: Le dessalement des materiaux poreux. SFIIC editions, Paris, pp 207–217

  • Vipulanandan C, Liu J (2005) Performance of polyurethane-coated concrete in sewer environment. Cem Concr Res 35(9):1754–1763. doi:10.1016/j.cemconres.2004.10.033

    Article  CAS  Google Scholar 

  • Voronina V, Pel L, Sawdy A, Kopinga K (2013) The influence of osmotic pressure on poulticing treatments for cultural heritage objects. Mater Struct 46:221–231. doi:10.1617/s11527-012-9896-0

    Article  CAS  Google Scholar 

  • Warke PA, Curran JM, Turkington AV, Smith BJ (2003) Condition assessment for building stone conservation: a staging system approach. Build Environ 38:1113–1123. doi:10.1016/S0360-1323(03)00085-4

    Article  Google Scholar 

  • Warscheid TH (2000) Integrated concepts for the protection of cultural artifacts against biodeterioration. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic, Dordrecht, pp 185–202

    Chapter  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368. doi:10.1016/S0964-8305(00)00109-8

    Article  CAS  Google Scholar 

  • Watt D, Colston B (2000) Investigating the effects of humidity and salt crystallisation on medieval masonry. Build Environ 35(8):737–749. doi:10.1016/S0360-1323(00)00015-9

    Article  Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770. doi:10.1016/j.cemconcomp.2011.03.012

    Article  CAS  Google Scholar 

  • Wilimzig M (1996) Desalting of nitrates by denitrification. In: Le dessalement des materiaux poreux. SFIIC editions, Paris, pp 233–240

  • Wood B (2003) Building care. Blackwell Scientific, Oxford

    Google Scholar 

  • Xu F, Li D, Zhang Q, Zhang H, Xu J (2012) Effects of addition of colloidal silica particles on TEOS-based stone protection using n-octylamine as a catalyst. Prog Org Coat 75:429–434. doi:10.1016/j.porgcoat.2012.07.001

    Article  CAS  Google Scholar 

  • Yang F, Zhang B, Liu Y, Wei G, Zhang H, Chen W, Xu Z (2011) Biomimic conservation of weathered calcareous stones by apatite. New J Chem 35(4):887. doi:10.1039/c0nj00783h

    Article  CAS  Google Scholar 

  • Yeih W, Chang JJ (2005) A study on the efficiency of electrochemical realkalisation of carbonated concrete. Constr Build Mater 19(7):516–524. doi:10.1016/j.conbuildmat.2005.01.006

    Article  Google Scholar 

  • Young D (2008) Salt attack and rising damp a guide to salt damp in historic and older buildings. Heritage Council of New South Wales, New South Wales. Heritage Office & New South Wales. Heritage Branch. http://www.heritage.nsw.gov.au/docs/HVC014_Salt_Damp_tech_guide_FA_web.pdf

  • Young ME, Urquhart DCM (1998) Algal growth on building sandstones: effects of chemical stone cleaning methods. Q J Eng Geol Hydrogeol 31(4):315–324. doi:10.1144/GSL.QJEG.1998.031.P4.04

    Article  Google Scholar 

  • Young ME, Urquhart DCM, Laing RA (2003) Maintenance and repair issues for stone cleaned sandstone and granite building façades. Build Environ 38(9–10):1125–1131. doi:10.1016/S0360-1323(03)00084-2

    Article  Google Scholar 

  • Young ME, Alakomi H-L, Fortune I, Gorbushina AA, Krumbein WE, Maxwell I, McCullagh C, Robertson P, Saarela M, Valero J, Vendrell M (2008) Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ Geol 56(3–4):631–641. doi:10.1007/s00254-008-1455-1

    Article  Google Scholar 

  • Youssef A, Pabon M, Woelflé E, Severac R, Gilbert RG (2008) Perfluorinated coatings and terracotta: an impregnation study. J Appl Polym Sci 110(2):663–677. doi:10.1002/app.28702

    Article  CAS  Google Scholar 

  • Zafiropulos V, Balas C, Manousaki A, Marakis Y, Maravelaki-Kalaitzaki P, Melesanaki K, Pouli P, Stratoudaki T, Klein S, Hildenhagen J, Dickmann K, Luk’Yanchuk BS, Mujat C, Dogairu A (2003) Yellowing effect and discoloration of pigments: experimental and theoretical studies. J Cult Herit 4:249–256. doi:10.1016/S1296-2074(02)01205-0

    Article  Google Scholar 

  • Zehnder K (1996) Gypsum efflorescence in the zone of rising damp. Monitoring of slow decay processes caused by crystallizing salts on wall paintings. In: Riederer J (ed) Proceedings of 8th international congress on deterioration and conservation of stone, Berlin, 30 Sept–4 Oct, pp 1669–1678

  • Zehnder K, Schoch O (2009) Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site. J Cult Herit 10(3):319–330. doi:10.1016/j.culher.2008.10.009

    Article  Google Scholar 

  • Zhao M, Zhang X, Wu XD, Dai YP, Peng Z (2010a) Waterproofing and breathable properties of polyurethane primers. Adv Mater Res 154–155:1549–1553. doi:10.4028/www.scientific.net/AMR.154-155.1549

    Article  CAS  Google Scholar 

  • Zhao Y, Du P, Jin W (2010b) Evaluation of the performance of surface treatments on concrete durability. J Zhejiang Univ Sci A 11(5):349–355. doi:10.1631/jzus.A0900580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Lab2PT, Landscape, Heritage and Territory Laboratory (UID/AUR/04509/2013) and the Centre of Geological Research, Management and Valorisation of Resources (CIG-R; PEst-OE/CTE/UI0697/2011; PEst-OE/CTE/UI0697/2014) receive support from the FCT—Fundação para a Ciência e Tecnologia (Portugal) with Portuguese funds and funds from the European Union (FEDER, Programa Operacional Factores de Competitividade—COMPETE). The University Institute of Geology of the University of A Coruña (Spain) receives support from the Xunta de Galicia with funds from “Consolidación y estructuración de unidades de investigación competitivas—Modelo Grupo de potencial de crecimiento (CN 2012/189)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C., Sanjurjo-Sánchez, J. Conservation of stony materials in the built environment. Environ Chem Lett 13, 413–430 (2015). https://doi.org/10.1007/s10311-015-0526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0526-2

Keywords