Skip to main content

Advertisement

Log in

Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Global warming is partly due to the increase in atmospheric CO2 concentration. In the last two decades, many investigations have studied the effect of high CO2 levels on crops. However, nearly all studies have examined the effects of CO2 enrichment up to about 1200 μmol mol−1. In general, more CO2 is beneficial to plant growth because plants feed on CO2. Here we tested the effect of CO2 levels from 400 to 5000 μmol mol−1 on the yield and antioxidant capacity of Chinese cabbage, Brassica chinensis, and lettuce, Lactuca sativa. Total antioxidant capacity was measured using the ferric ion reducing antioxidant potential assay and the diphenyl-picryl-hydrazylhydrate free radical detection. Our results show that, as expected, CO2 concentrations of 1000–3000 μmol mol−1 enhance the yields and contents of polyphenols, flavonoids and vitamin C in both vegetables. However, surprisingly, further increase up to 5000 μmol mol−1 CO2 decreased yields and contents of polyphenols, flavonoids and vitamin C. Our findings thus show that very high atmospheric CO2 levels are impeding the growth of tested plants. They also suggest that agricultural food and production could be depleted at high atmospheric CO2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MB, Hahn EJ, Paek K-Y (2005) CO2-induced total phenolics in suspension cultures of Panax ginseng CA Mayer roots: role of antioxidants and enzymes. Plant Physiol Biochem 43:449–457. doi:10.1016/j.plaphy.2005.03.005

    Article  CAS  Google Scholar 

  • Bahorun T, Luximon-Ramma A, Crozier A, Aruoma OI (2004) Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J Sci Food Agric 84:1553–1561. doi:10.1002/jsfa.1820

    Article  CAS  Google Scholar 

  • Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol 299:15–27. doi:10.1016/S0076-6879(99)99005-5

    Article  CAS  Google Scholar 

  • Berkovich YA, Smolyanina S, Krivobok N, Erokhin A, Agureev A, Shanturin N (2009) Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario. Adv Space Res 44:170–176. doi:10.1016/j.asr.2009.03.002

    Article  Google Scholar 

  • Chagvardieff P, Dimon B, Souleimanov A, Massimino D, Le Bras S, Péan M, Louche-Teissandier D (1997) Effects of modified atmosphere on crop productivity and mineral content. Adv Space Res 20:1971–1974. doi:10.1016/S0273-1177(97)00262-7

    Article  CAS  Google Scholar 

  • Chotte JL, Diouf MN, Assigbetsé K, Lesueur D, Rabary B, Sall SN (2012) Unexpected similar stability of soil microbial CO2 respiration in 20-year manured and in unmanured tropical soils. Environ Chem Lett 11:135–142. doi:10.1007/s10311-012-0388-9

    Article  Google Scholar 

  • Davey M, Franck C, Keulemans J (2004) Distribution, developmental and stress responses of antioxidant metabolism in Malus. Plant, Cell Environ 27:1309–1320. doi:10.1111/j.1365-3040.2004.01238.x

    Article  CAS  Google Scholar 

  • Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200:219–230. doi:10.1111/jac.12059

    Article  CAS  Google Scholar 

  • Fu Y, Liu H (2012) Cultivation of three cruciferous vegetables in a confined environment decreases microbial burden. Ecol Eng 44:174–178. doi:10.1016/j.ecoleng.2012.04.009

    Article  Google Scholar 

  • Fu Y, Liu H, Shao L, Wang M, Berkovich YA, Erokhin AN, Liu H (2013) A high-performance ground-based prototype of horn-type sequential vegetable production facility for life support system in space. Adv Space Res 52:97–104. doi:10.1016/j.asr.2013.03.020

    Article  CAS  Google Scholar 

  • Gennaro GD, Dambruoso PR, Loiotile AD, Gilio AD, Giungato P, Tutino M, Marzocca A, Mazzone A, Palmisani J, Porcelli F (2014) Indoor air quality in schools. Environ Chem Lett 12:467–482. doi:10.1007/s10311-014-0470-6

    Article  Google Scholar 

  • Ghasemzadeh A, Jaafar HZ, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15(11):7907–7922. doi:10.3390/molecules15117907

    Article  CAS  Google Scholar 

  • Gonçalves B, Vl Falco, Moutinho-Pereira J, Bacelar E, Peixoto F, Correia C (2008) Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J Sci Food Agric 57(1):265–273. doi:10.1021/jf8020199

    Article  Google Scholar 

  • Grotenhuis T, Reuveni J, Bugbee B (1997) Super-optimal CO2 reduces wheat yield in growth chamber and greenhouse environments. Adv Space Res 20:1901–1904. doi:10.1016/S0273-1177(97)00858-2

    Article  CAS  Google Scholar 

  • Jaiswal AK, Rajauria G, Abu-ghannam N, Gupta S (2012) Effect of different solvents on polyphenolic content, antioxidant capacity and antibacterial activity of Irish York cabbage. J Food Biochem 36:344–358. doi:10.1111/j.1745-4514.2011.00545.x

    Article  CAS  Google Scholar 

  • Kim D-O, Chun OK, Kim YJ, Moon H-Y, Lee CY (2003) Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509–6515. doi:10.1021/jf0343074

    Article  CAS  Google Scholar 

  • Krumbein A, Klaring HP, Schonhof I, Schreiner M (2010) Atmospheric carbon dioxide changes photochemical activity, soluble sugars and volatile levels in broccoli (Brassica oleracea var. italica). J Agric Food Chem 58:3747–3752. doi:10.1021/jf903280w

    Article  CAS  Google Scholar 

  • Levine LH, Paré PW (2009) Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Adv Space Res 44:887–894. doi:10.1016/j.asr.2009.06.017

    Article  CAS  Google Scholar 

  • Levine LH, Kasahara H, Kopka J, Erban A, Fehrl I, Kaplan F, Zhao W, Littell RC, Guy C, Wheeler R (2008) Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Adv Space Res 42:1917–1928. doi:10.1016/j.asr.2008.07.014

    Article  CAS  Google Scholar 

  • Levine LH, Richards JT, Wheeler RM (2009) Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max). J Plant Physiol 166(9):903–913. doi:10.1016/j.jplph.2008.11.006

    Article  CAS  Google Scholar 

  • McDonald JL, Sykora RE, Hixon P, Mirjafari A, Davis JH (2013) Impact of water on CO2 capture by amino acid ionic liquids. Environ Chem Lett 12:201–208. doi:10.1007/s10311-013-0435-1

    Article  Google Scholar 

  • Miglietta F, Raschi A (1993) Studying the effect of elevated CO2 in the open in a naturally enriched environment in Central Italy. In: Rozema J, Lambers H, van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Springer, pp 391–402

  • Norikane A, Takamura T, Morokuma M, Tanaka M (2010) In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps. Plant Cell Rep 29:273–283. doi:10.1007/s00299-010-0820-1

    Article  CAS  Google Scholar 

  • Schoch GA, Morant M, Abdulrazzak N, Asnaghi C, Goepfert S, Petersen M, Ullmann P, Werck-Reichhart D (2006) The meta-hydroxylation step in the phenylpropanoid pathway: a new level of complexity in the pathway and its regulation. Environ Chem Lett 4:127–136. doi:10.1007/s10311-006-0062-1

    Article  CAS  Google Scholar 

  • Shao L, FuY Liu H, Liu H (2015) Changes of the antioxidant capacity in Gynura bicolor DC under different light sources. Sci Hortic 184:40–45. doi:10.1016/j.scienta.2014.12.010

    Article  CAS  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  • Tikhomirov AA, Ushakova SA, Manukovsky NS, Lisovsky GM, Kudenko YA, Kovalev VS, Gubanov VG, Barkhatov YV, Gribovskaya IV, Zolotukhin IG (2003) Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment. Adv Space Res 31:1711–1720. doi:10.1016/S0273-1177(03)80017-0

    Article  CAS  Google Scholar 

  • Tikhomirov AA, Ushakova SA, Velichko VV, Tikhomirova NA, Kudenko YA, Gribovskaya IV, Gros JB, Lasseur C (2011) Assessment of the possibility of establishing material cycling in an experimental model of the bio-technical life support system with plant and human wastes included in mass exchange. Acta Astronaut 68:1548–1554. doi:10.1016/j.actaastro.2010.10.005

    Article  CAS  Google Scholar 

  • Wang SY, Bunce JA, Maas J (2003) Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem 51:4315–4320. doi:10.1021/jf021172d

    Article  CAS  Google Scholar 

  • Wang M, Xie B, FuY Dong C, Liu H, Liu G, Liu H (2015a) Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency, and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynth Res. doi:10.1007/s11120-015-0134-9

    Google Scholar 

  • Wang M, Dong C, Fu Y, Liu H (2015b) Growth, morphological and photosynthetic characteristics, antioxidant capacity, biomass yield and water use efficiency of Gynura bicolor DC exposed to super-elevated CO2. Acta Astronaut 114:138–146. doi:10.1016/j.actaastro.2015.05.010

    Article  CAS  Google Scholar 

  • Wheeler RM (2010) Plants for human life support in space: from Myers to Mars. Gravit Space Res 23:25–35

    Google Scholar 

  • Wojciechowska R, Dlugosz-Grochowska O, Kolton A, Żupnik M (2015) Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic 187:80–86. doi:10.1016/j.scienta.2015.03.006

    Article  Google Scholar 

  • Wootton-Beard PC, Ryan L (2011) Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res Int 44:3135–3148. doi:10.1016/j.foodres.2011.09.015

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Ministry of Science and Technology of China Grant (2013AA103004) and National Natural Science Foundation of China (No. 31301706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Additional information

Yuming Fu, Lingzhi Shao and Hui Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Shao, L., Liu, H. et al. Unexpected decrease in yield and antioxidants in vegetable at very high CO2 levels. Environ Chem Lett 13, 473–479 (2015). https://doi.org/10.1007/s10311-015-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0522-6

Keywords

Navigation