Skip to main content

Advertisement

Log in

Soil irrigation with toxic cyanobacterial microcystins increases soil nitrification potential

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Microcystins are cyclic heptapeptide hepatotoxins produced by aquatic cyanobacteria such as Microcystis aeruginosa. The wide occurrence of toxic microcystins in freshwater is a threat to the quality of water, agriculture, and human and animal health. There is actually little knowledge on the impact of microcystins on soil biomass. Here, an agricultural soil was daily irrigated with a cyanobacterial extract diluted at environmental concentrations of microcystin–leucine–arginine, from 0.005 to 0.1 mg equivalent MC-LR L−1, for 90 days. We measured soil enzymatic activities, nitrification potential activity of the soil microbial community, abundances of ammonia-oxidizing bacteria, and ammonia-oxidizing archaea amoA genes. Our results show an increase in potential nitrification for microcystin levels ranging between 0.005 and 0.02 mg eq. MC-LR L−1. Global enzymatic activities were unchanged. Abundances of total bacteria, archaea, and ammonia-oxidizing functional groups were not modified and could not explain the increase in nitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bouaïcha N, Chézeau A, Turquet J et al (2001) Morphological and toxicological variability of Prorocentrum lima clones isolated from four locations in the south-west Indian Ocean. Toxicon 39:1195–1202. doi:10.1016/S0041-0101(00)00258-0

    Article  Google Scholar 

  • Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl Environ Microbiol 74:1660–1663. doi:10.1128/AEM.02403-07

    Article  CAS  Google Scholar 

  • Chen J, Song L, Dai J et al (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon Off J Int Soc Toxinol 43:393–400. doi:10.1016/j.toxicon.2004.01.011

    Article  CAS  Google Scholar 

  • Corbel S, Bouaïcha N, Mougin C (2014a) Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environ Chem Lett 12:535–541. doi:10.1007/s10311-014-0482-2

    Article  CAS  Google Scholar 

  • Corbel S, Mougin C, Bouaïcha N (2014b) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi:10.1016/j.chemosphere.2013.07.056

    Article  CAS  Google Scholar 

  • Corbel S, Mougin C, Martin-Laurent F et al (2015) Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil–plant system. Chemosphere 128:332–340. doi:10.1016/j.chemosphere.2015.02.008

    Article  CAS  Google Scholar 

  • Crouzet O, Poly F, Bonnemoy F, Bru D, Bisson I, Bohatier J, Philippot L, Mallet L. Functional and structural responses of soil N-cycling microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Accepted ESPR

  • de Santiago-Martín A, Cheviron N, Quintana JR et al (2013) Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area. Arch Environ Contam Toxicol 64:388–398. doi:10.1007/s00244-012-9842-8

    Article  Google Scholar 

  • El Khalloufi F, El Ghazali I, Saqrane S et al (2012) Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. Ecotoxicol Environ Saf 79:199–205. doi:10.1016/j.ecoenv.2012.01.002

    Article  Google Scholar 

  • Gupta N, Bhaskar ASB, Dangi RS et al (2001) Toxin production in batch cultures of freshwater cyanobacterium Microcystis aeruginosa. Bull Environ Contam Toxicol 67:0339–0346. doi:10.1007/s001280130

    CAS  Google Scholar 

  • Hernández M, Jia Z, Conrad R, Seeger M (2011) Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. FEMS Microbiol Ecol 78:511–519. doi:10.1111/j.1574-6941.2011.01180.x

    Article  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A et al (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797. doi:10.1046/j.1462-2920.2003.00476.x

    Article  CAS  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M et al (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. doi:10.1111/j.1462-2920.2011.02679.x

    Article  CAS  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26. doi:10.1016/S0140-6736(97)12285-1

    Article  CAS  Google Scholar 

  • Puddick J, Prinsep MR, Wood SA et al (2013) Isolation and structure determination of two new hydrophobic microcystins from Microcystis sp. (CAWBG11). Phytochem Lett 6:575–581. doi:10.1016/j.phytol.2013.07.011

    Article  CAS  Google Scholar 

  • Robillot C, Hennion MC (2001) Les principales classes de cyanotoxines et leur détermination. In: Frémy JM, Lassus P (eds) Toxines d’algues dans l’alimentation. Ifremer, Brest, pp 41–85

  • Ruyters S, Nicol GW, Prosser JI et al (2013) Activity of the ammonia oxidizing bacteria is responsible for zinc tolerance development of the ammonia oxidizing community in soil: a stable isotope probing study. Soil Biol Biochem 58:244–247

    Article  CAS  Google Scholar 

  • Saqrane S, El Ghazali I, Oudra B et al (2008) Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J Environ Sci Health B 43:443–451. doi:10.1080/10934520701796192

    Article  CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. E & FN Spon, London, pp 53–125

  • Wessén E, Söderström M, Stenberg M et al (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J 5:1213–1225. doi:10.1038/ismej.2010.206

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank V. Grondin, C. Marrault, G. Delarue, F. Poiroux, A. Trouvé, J.Thénard, G. Caro, B. Pey (UR PESSAC, INRA Versailles), A. Fortineau (UMR EGC, INRA Grignon), and J-P Meunier (UMR IJPB, INRA Versailles) for help and technical assistance. Soil enzymatic activities were achieved on the platform Biochem-Env, a service of the “Investment d’Avenir” infrastructure AnaEE-France, overseen by the French National Research Agency (ANR) (ANR-11-INBS-0001). This work is part of the “Investment d’Avenir” Program overseen by the French National Research Agency (ANR) (LabEx BASC, ANR-11-LABX-0034). The departments PESSAC and ESE are members of the EcoBASC Network. The research was supported with a grant to S. Corbel from Région Ile-de-France, DIM-ASTREA program No. ast110055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mougin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corbel, S., Bouaïcha, N., Martin-Laurent, F. et al. Soil irrigation with toxic cyanobacterial microcystins increases soil nitrification potential. Environ Chem Lett 13, 459–463 (2015). https://doi.org/10.1007/s10311-015-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0520-8

Keywords