Skip to main content
Log in

Production, recovery and reuse of biogenic elemental selenium

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Selenium (Se) has caused several ecological disasters due to its toxicity and bioaccumulation along trophic networks. Industrial activities that process fossil fuels and mineral ores, such as electricity generation, metal extraction and oil refining, produce wastewaters containing selenium. Currently, these wastewaters are insufficiently treated before being discharged into the environment. Several environmental biotechnological processes are used to convert soluble selenium oxyanions, selenite and selenate, to solid elemental selenium, Se(0), because elemental selenium is less toxic. Applying a post-treatment solid–liquid separation step to these biological processes removes and separates Se(0) from the treated effluent. Here, we review the sources of selenium-rich waste streams, and we propose several techniques for the removal and reuse of selenium. The major points are as follows: (1) Biogenic Se(0) has colloidal properties that can be offset by the addition of coagulants, either by dissolving multivalent salts or by electrogenerating the coagulant in situ; (2) recovered biogenic Se(0) is a secondary raw material and (3) biogenic Se(0) can be used for niche applications such as fertilizers and adsorbent for metals. The biological treatment of industrial wastewater containing selenium can be linked with resource recovery as a sound and economic approach to alleviate the demand for this critical element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfthan G, Eurola M, Ekholm P, Venäläinen ER, Root T, Korkalainen K, Hartikainen H, Salminen P, Hietaniemi V, Aspila P, Aro A (2014) Effects of nationwide addition of selenium to fertilizers on foods and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol. doi:10.1016/jjtemb201404009

    Google Scholar 

  • Bebien M, Lagniel G, Garin J, Touati D, Vermeglio A, Labarre J (2002) Involvement of superoxide dismutases in the response of Escherichia coli to selenium oxides. J Bacteriol 184:1556–1564

    Article  CAS  Google Scholar 

  • Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407

    Article  CAS  Google Scholar 

  • Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environments. SETAC Press, Pensacola

    Book  Google Scholar 

  • DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  • Dobias J, Suvorova EI, Bernier-Latmani R (2011) Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22:195605

    Article  CAS  Google Scholar 

  • Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL (2015) Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microb. doi:10.1007/s00253-014-6127-3

  • Fellowes JW, Pattrick RA, Green DI, Dent A, Lloyd JR, Pearce CI (2011) Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J Hazard Mater 189:660–669

    Article  CAS  Google Scholar 

  • Fernandez-Martinez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Gates B, Mayers B, Cattle B, Xia Y (2002) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 12:219–227

    Article  CAS  Google Scholar 

  • Gregory J, Duan J (2001) Hydrolyzing metal salts as coagulants. Pure Appl Chem 73:2017–2026

    Article  CAS  Google Scholar 

  • Harrison GI, Laishley EJ, Krouse HR (1980) Stable isotope fractionation by Clostridium pasteurianum. 3. Effect of SeO3 on the physiology and associated sulfur isotope fractionation during SO3 and SO4 reductions. Can J Microbiol 26:952–958

    Article  CAS  Google Scholar 

  • Harrison GI, Curle C, Laishley EJ (1984) Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol 138:72–78

    Article  CAS  Google Scholar 

  • Haygarth PM (1994) Global importance and global cycling of selenium. In: Frankenberger WT, Benson S (eds) Selenium in the environment. Marcel-Dekker, New York, pp 1–28

  • Hunter WJ, Manter DK (2011) Pseudomonas seleniipraecipitatus sp nov: a selenite reducing γ-Proteobacteria isolated from soil. Curr Microbiol 62:565–569

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA). http://www.iea.org/topics/coal/(2014). Accessed 25 Oct 2014

  • Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863

    Article  CAS  Google Scholar 

  • Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer H, van Hullebusch ED, Farges F, Lens PNL (2015b) Extracellular polymeric substances (EPS) govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol. doi:10.1021/es5043063

  • Janssen AJH, Ruitenberg R, Buisman CJ (2001) Industrial applications of new sulphur biotechnology. Water Sci Technol 44:85–90

    CAS  Google Scholar 

  • Jiang S, Ho CT, Lee JH, Duong HV, Han S, Hur HG (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 87:621–624

    Article  CAS  Google Scholar 

  • Johnson JA, Saboungi ML, Thiyagarajan P, Csencsits R, Meisel D (1999) Selenium nanoparticles: a small-angle neutron scattering study. J Phys Chem B 103:59–63

    Article  CAS  Google Scholar 

  • Johnson NC, Manchester S, Sarin L, Gao Y, Kulaots I, Hurt RH (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42:5772–5778

    Article  CAS  Google Scholar 

  • Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47:1361–1368

    Article  CAS  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669

    Article  CAS  Google Scholar 

  • Krafft T, Bowen A, Theis F, Macy JM (2000) Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq 10:365–377

    CAS  Google Scholar 

  • Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011a) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112:259–264

    Article  CAS  Google Scholar 

  • Kuroda M, Yamashita M, Miwa E, Imao K, Fujimoto N, Ono H, Nagano K, Sei K, Ike M (2011b) Molecular cloning and characterization of the srdBCA operon encoding the respiratory selenate reductase complex from the selenate-reducing bacterium Bacillus selenatarsenatis SF-1. J Bacteriol 193:2141–2148

    Article  CAS  Google Scholar 

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  CAS  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56

    Article  CAS  Google Scholar 

  • Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 8:251–256

    Article  Google Scholar 

  • Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044

    CAS  Google Scholar 

  • Luoma SN, Johns C, Fisher NS, Steinberg NA, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a bivalve from particulate and solute pathways. Environ Sci Technol 26:485–491

    Article  CAS  Google Scholar 

  • Macaskie LE, Mikheenko IP, Yong P, Deplanche K, Murray AJ, Paterson-Beedle M, Coker VS, Pearce CI, Cutting R, Pattrick RAD, Vaughan D, van der Laan G, Lloyd JR (2010) Today’s wastes tomorrow’s materials for environmental protection. Hydrometallurgy 104:483–487

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    CAS  Google Scholar 

  • North American Metal Council (NAMC) (2010) Review of available technologies for removal of selenium from water. http://www.namcorg/docs/00062756.pdf

  • Nuttall KL (1987) A model for metal selenide formation under biological conditions. Med Hypotheses 2:217–221

    Article  Google Scholar 

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Jacobs LM (ed) Selenium in agriculture and the environment. Soil Science Society of America and American Society of Agronomy, Madison Wisconsin series number 23, pp 133–177. doi:10.2136/sssaspecpub23.c8

  • Opara A, Peoples MJ, Adams JD, Martin AS (2014) Electro-biochemical reactor (EBR) technology for selenium removal from British Columbia’s coal-mining wastewaters http://www.inotecus/uploads/5/1/2/8/5128573/selenium_removal_coal_mine_water_inotec-sme2014pdf

  • Pearce CI, Coker VS, Charnock JM, Pattrick RA, Mosselmans JF, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:1–13

    Google Scholar 

  • Pickett T, Sonstegard J, Bonkoski B (2008) Using biology to treat selenium. Power Eng 110:140–145

    Google Scholar 

  • Presser TS, Luoma SN (2006) Forecasting selenium discharges to the San Francisco Bay-Delta estuary: ecological effects of a proposed San Luis drain extension US geological survey professional paper 1646

  • Purkerson DG, Doblin MA, Bollens SM, Luoma SN, Cutter GA (2003) Selenium in San Francisco Bay zooplankton: potential effects of hydrodynamics and food web interactions. Estuaries 26:956–969

    Article  CAS  Google Scholar 

  • Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated selenium on the bivalve Potamocorbila amuresis. Environ Sci Technol 34:4504–4510

    Article  CAS  Google Scholar 

  • Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    Article  CAS  Google Scholar 

  • Schröder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768

    Article  Google Scholar 

  • Simmons DB, Wallschlaeger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343

    Article  CAS  Google Scholar 

  • Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA (2015a) Electrocoagulation of colloidal biogenic selenium. Environ Sci Poll Res. doi:10.1007/s11356-014-3592-2

    Google Scholar 

  • Staicu LC, Ackerson CJ, Cornelis P, Ye L, Berendsen RL, Hunter WJ, Noblitt SD, Henry CS, Cappa JJ, Montenieri RL, Wong AO, Musilova L, Sura-de Jong M, van Hullebusch ED, Lens PNL, Pilon-Smits EAH (2015b) Pseudomonas moraviensis subsp. stanleyae: a bacterial endophyte capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microb (in revision)

  • Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2015c) Removal of colloidal biogenic selenium from wastewater. Chemosphere. doi:10.1016/j.chemosphere.2014.12.018

  • Sura-de Jong M, Reynolds J, Richterova K, Musilova L, Staicu LC, Hrochova I, Cappa JJ, van der Lelie D, Frantik T, Sakmaryova I, Strejcek M, Cochran A, Lovecka P, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by extreme selenium tolerance and growth promoting properties. Front Plant Sci (in revision)

  • Theisen J, Yee N (2014) The molecular basis for selenate reduction in Citrobacter freundii. Geomicrobiol J 31:875–883

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    Article  CAS  Google Scholar 

  • USEPA (2010) North San Francisco Bay selenium characterization study plan (2010–2012). http://www2.epagov/sites/production/files/documents/epa-r09-ow-2010-0976-0023-1pdf

  • van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Yan W, Herzing AA, Kiely CJ, Zhang WX (2010) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118:96–104

    Article  CAS  Google Scholar 

  • Yudovich YE, Ketris MP (2006) Selenium in coal: a review. Int J Coal Geol 67:112–126

    Article  CAS  Google Scholar 

  • Zhang Y, Zahir ZA, Frankenberger WT Jr (2004) Fate of colloidal-particulate elemental selenium in aquatic systems. J Environ Qual 33:559–564

    Article  CAS  Google Scholar 

  • Zhang ES, Wang HL, Yan XX, Zhang LD (2005) Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci 76:1099–1109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful our collaborators Prof. Mehmet Oturan (Université Paris-Est, France) and Prof. Elizabeth Pilon-Smits (Colorado State University, USA) for useful discussions during the preparation of this manuscript. The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the grant agreement FPA n°2010-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. van Hullebusch.

Glossary

Anaerobic granular sludge

Biomass in granular form produced by the auto-immobilization of mixed microbial populations and employed for the treatment of wastewater in up flow anaerobic granular sludge reactors

Biogenic

Resulting from the action of a living organism; in the current context, Se nanoparticles produced by the metabolic activity of microorganisms.

Chalcogen

Chemical element in group 16 of the periodic table; i.e., Oxygen (O), Sulfur (S), Selenium (Se), Tellurium (Te) and Polonium (Po). These elements are strongly associated with metal-bearing minerals.

Chemogenic

Resulting from chemical action; in the current context, Se nanoparticles produced through the reduction of Se oxyanions using a chemical reducing agent.

Colloidal system

System containing fine particles dispersed within a continuous medium that cannot be settled easily by gravitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staicu, L.C., van Hullebusch, E.D. & Lens, P.N.L. Production, recovery and reuse of biogenic elemental selenium. Environ Chem Lett 13, 89–96 (2015). https://doi.org/10.1007/s10311-015-0492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0492-8

Keywords

Navigation