Skip to main content
Log in

Nanosilver products and toxicity

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanotechnology focuses on materials in which at least one dimension is lower than 100 nm. Those materials have unique properties because their structures have high surface to mass ratios. For instance, silver nanoparticles are increasingly added to everyday products because silver nanoparticles have a high biocidal effect against bacteria, viruses and fungi. Here, we review products enriched in silver nanoparticles and the fate of nanoparticles in the environment. Silver nanoparticles can be absorbed by plant and animal tissues and thus penetrate into the food chain. Despite a paucity of studies of their toxicity to the human body, literature reports show the negative effects of nanoparticles on animals. Products such as hygiene preparations, dental implants, toothpastes and textiles may release silver nanoparticles in the environment. Rainwater washes silver nanoparticles out of building materials such as paint, siding and roofing. Silver nanoparticles may then accumulate in the soil. Silver nanoparticles that are added to air conditioners and air filters may penetrate the atmosphere then be inhaled by living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Ahangaran MG, Firouzabadi MSS, Firouzabadi MS (2012) Evaluation of antiseptic role of one nanosilver based drug as a new therapeutic method for treatment of bumblefoot in pheasant (Phasianus colchicus). Glob Vet 8:73–75

    Google Scholar 

  • Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186

    Article  CAS  Google Scholar 

  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14–25

    Article  CAS  Google Scholar 

  • Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165

    Article  CAS  Google Scholar 

  • Blaster SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver; contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  Google Scholar 

  • Bonsak J, Mayandi J, Thøgersen A, Marstein ES, Mahalingam U (2011) Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi C 8:924–927

    Article  CAS  Google Scholar 

  • Cheng H, Xiong Y (2003) Nano silver antibacterial health socks. CN 2579183 Y

  • Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HHK (2013) Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater 29:462–472

    Article  CAS  Google Scholar 

  • Chuankrerkkul N, Sangsuk S (2008) Current status of nanotechnology consumer products and nano-safety issues. J Met Mater Miner 18:75–79

    CAS  Google Scholar 

  • Communication From The Commission To The European Parliament (2012) The Council And The European Economic And Social Committee second regulatory review on nanomaterials, Brussels. http://ec.europa.eu/nanotechnology/pdf/second_regulatory_review_on_nanomaterials_-_com(2012)_572.pdf. Accessed 02 May 2014

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MY (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. doi:10.1186/1477-3155-3-6

    Google Scholar 

  • Ethylene Glycol Datasheet (2014) Sigma Aldrich (sigma-aldrich.com dated 27.02.2014 r)

  • Fauss E (2008) The silver nanotechnology commercial inventory. University of Virginia. http://www.nanotechproject.org/process/assets/files/6718/fauss_final.pdf. Accessed 02 May 2014

  • Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957

    Article  CAS  Google Scholar 

  • Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5–17

    Article  Google Scholar 

  • Ha TH, Jeong JY, Jung BH, Kim JK, Lim YT (2009) Cosmetic pigment composition containing gold or silver nano-particles. WO 2007011103 A1

  • Heydarnejad MS, Yarmohammadi-Samani P, Dehkordi MM, Shadkhast M, Rahnama S (2014) Histopathological effects of nanosilver (Ag-NPs) in liver after dermal exposure during wound healing. Nanomed J 1:191–197

    Google Scholar 

  • Holladay RJ (2013) Toothpaste or tooth gel containing silver nano particles coated with silver oxide. US 20130017236 A1

  • Horner CJ, Kumar A, Nieradka KR (2012) Nanosilver as a biocide in building materials. US 0272542 A1

  • Hydrazine Hydrate Datasheet (2014) Sigma Aldrich (sigma-aldrich.com dated 27.02.2014 r)

  • Kader SS, Paul DP, Hoque SM (2014) Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method. Int J Mater Mech Manuf 2:5–8

    CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905

    Article  CAS  Google Scholar 

  • Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2010) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B 82:513–518

    Article  Google Scholar 

  • Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, Yu IJ (2011) In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work 2:34–38

    Article  CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    Article  CAS  Google Scholar 

  • Koohi MK, Hejazy M, Asadi F, Asadian P (2011) Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits. J Phys. doi:10.1088/1742-6596/304/1/012028

    Google Scholar 

  • Kovvuru SK, Mahita VN, Manjunatha BS, Babu BS (2012) Nanotechnology: the emerging science in dentistry. J Orofac Res 2:33–36

    Google Scholar 

  • Kowalski Z, Makara A, Banach M, Kowalski M (2010) Zastosowanie preparatów nanosrebra do oczyszczania powietrza z instalacji klimatyzacyjnej zakładów mięsnych. Przem Chem 89:434–437

    CAS  Google Scholar 

  • Kwon H, Yun H, Kim I, Go S (2006) Antibacterial paint containing nano silver particles and coating method using the same. US 0287112 A1

  • Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Linkov I, Satterstorm FK, Corey LM (2008) Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4:167–171

    Article  CAS  Google Scholar 

  • Loghman A, Iraj SH, Naghi DA, Pejman M (2012) Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. Afr J Biotechnol 11:6207–6211

    CAS  Google Scholar 

  • Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zan V (2011) Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. Afr J Biotechnol 10:6799–6803

    CAS  Google Scholar 

  • Lu K (2013) Nanoparticulate materials: synthesis, characterization, and processing. Willey, New Jersey

    Google Scholar 

  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66

    Article  CAS  Google Scholar 

  • McFarland AD, van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • Mehrbod P, Motamed N, Tabatabaian M, Soleimani Estyar R, Amini E, Shahidi M, Kheiri MT (2009) In vitro antiviral effect of nanosilver on influenza virus. Daru 17:88–93

    CAS  Google Scholar 

  • Nia JR (2009) Nanosilver for preservation and treatment of diseases in agriculture field. US 0075818 A1

  • Niakan M, Azimi HR, Jafarian Z, Mohammadtaghi G, Niakan S, Mostafavizade SM (2013a) Evaluation of nanosilver solution stability against Streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa. Jundishapur J Microbiol 6:e8570. doi:10.5812/jjm.8570

    Google Scholar 

  • Niakan S, Niakan M, Hesaraki S, Nejad-moghaddam MR, Moradi M, Hanafiabdar M, Allamezadeh R, Sabouri M (2013b) Comparison the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol 6:e8341. doi:10.5812/jjm.8341

    Google Scholar 

  • OECD Guidelines for the Testing of Chemicals (2004) Daphnia sp., acute Immobilization Test Paris, France. Organization for Economic Cooperation and Development, Test No. 202

  • OECD Guidelines for the Testing of Chemicals (2008) Subchronic inhalation toxicity: 90-day study. Organization for Economic Cooperation and Development, Test No. 474

  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Publ Health 10:5221–5238

    Article  CAS  Google Scholar 

  • Osuwa JC, Anusionwu PC (2011) Some advances and prospects in nanotechnology: a review. Asian J Inf Tech 10:96–100

    Article  Google Scholar 

  • Petrus EM, Tinakumari S, Chai LC, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int Food Res J 18:55–66

    CAS  Google Scholar 

  • Polyvinylpyrrolidone Datasheet (2014) Sigma Aldrich (sigma-aldrich.com dated 27.02.2014 r)

  • Prashant J, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  Google Scholar 

  • Pulit J, Banach M, Kowalski Z (2011a) Nanosilver—making hard decision. Ecol Chem Eng S 18:185–195

    CAS  Google Scholar 

  • Pulit J, Banach M, Kowalski Z (2011b) Właściwości nanocząsteczek miedzi, platyny, srebra, złota i palladu. Czasopismo Techniczne. Chemia 108:197–209

    CAS  Google Scholar 

  • Pulit J, Banach M, Tymczyna L, Chmielowiec-Korzeniowska A (2012) Stan badań i kierunki zmian w otrzymywaniu nanostrukturalnego srebra. Przem Chem 91:929–936

    CAS  Google Scholar 

  • Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, Waugh S, Kenyon A, MacCuspie RI, Hackley VA, Castranova V (2013) Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J Toxicol Environ Health 76:651–668

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  • SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), European Commission

  • Schiffman SS (1998) Livestock odors: implications for human health and well-being. J Anim Sci 76:1343–1355

    CAS  Google Scholar 

  • Shahrokh S, Emtiazi G (2009) Toxicity and unusual biological behavior of nanosilver on Gram-positive and negative bacteria assayed by microtiter-plate. Eur J Biol Sci 1:28–31

    Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol 3:68–171

    Article  Google Scholar 

  • Sharma VK (2013) Stability and toxicity of silver nanoparticles in aquatic environment: a review. ACS Symp Ser 1124:165–179

    Article  CAS  Google Scholar 

  • Sivolella S, Stellini E, Brunello G, Gardin C, Ferroni L, Bressan E, Zavan B (2012) Silver nanoparticles in alveolar bone surgery devices. J Nanomater. doi:10.1155/2012/975842

    Google Scholar 

  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in sprague-dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Meent D, Dekkers S, De Jong WH, Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350

    Article  CAS  Google Scholar 

  • Yan J, Cheng J (2002) Nanosilver—containing antibacterial and antifungal granules and methods for preparing and using the same. US 6379712 B1

  • Yaoguang H, Xing H, Hong-liang L (2011) Skin care fancy soap. CN 102242026 A

  • Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7:e8720. doi:10.5812/jjm.8720

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Pulit-Prociak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulit-Prociak, J., Stokłosa, K. & Banach, M. Nanosilver products and toxicity. Environ Chem Lett 13, 59–68 (2015). https://doi.org/10.1007/s10311-014-0490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0490-2

Keywords

Navigation