Environmental Chemistry Letters

, Volume 13, Issue 1, pp 59–68 | Cite as

Nanosilver products and toxicity

  • Jolanta Pulit-ProciakEmail author
  • Katarzyna Stokłosa
  • Marcin Banach


Nanotechnology focuses on materials in which at least one dimension is lower than 100 nm. Those materials have unique properties because their structures have high surface to mass ratios. For instance, silver nanoparticles are increasingly added to everyday products because silver nanoparticles have a high biocidal effect against bacteria, viruses and fungi. Here, we review products enriched in silver nanoparticles and the fate of nanoparticles in the environment. Silver nanoparticles can be absorbed by plant and animal tissues and thus penetrate into the food chain. Despite a paucity of studies of their toxicity to the human body, literature reports show the negative effects of nanoparticles on animals. Products such as hygiene preparations, dental implants, toothpastes and textiles may release silver nanoparticles in the environment. Rainwater washes silver nanoparticles out of building materials such as paint, siding and roofing. Silver nanoparticles may then accumulate in the soil. Silver nanoparticles that are added to air conditioners and air filters may penetrate the atmosphere then be inhaled by living organisms.


Silver Nanoparticles Polyurethane Foam Chlamydia Trachomatis Dental Implant Silver Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  2. Ahangaran MG, Firouzabadi MSS, Firouzabadi MS (2012) Evaluation of antiseptic role of one nanosilver based drug as a new therapeutic method for treatment of bumblefoot in pheasant (Phasianus colchicus). Glob Vet 8:73–75Google Scholar
  3. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186CrossRefGoogle Scholar
  4. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:14–25CrossRefGoogle Scholar
  5. Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165CrossRefGoogle Scholar
  6. Blaster SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver; contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  7. Bonsak J, Mayandi J, Thøgersen A, Marstein ES, Mahalingam U (2011) Chemical synthesis of silver nanoparticles for solar cell applications. Phys Status Solidi C 8:924–927CrossRefGoogle Scholar
  8. Cheng H, Xiong Y (2003) Nano silver antibacterial health socks. CN 2579183 YGoogle Scholar
  9. Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HHK (2013) Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater 29:462–472CrossRefGoogle Scholar
  10. Chuankrerkkul N, Sangsuk S (2008) Current status of nanotechnology consumer products and nano-safety issues. J Met Mater Miner 18:75–79Google Scholar
  11. Communication From The Commission To The European Parliament (2012) The Council And The European Economic And Social Committee second regulatory review on nanomaterials, Brussels. Accessed 02 May 2014
  12. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MY (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. doi: 10.1186/1477-3155-3-6 Google Scholar
  13. Ethylene Glycol Datasheet (2014) Sigma Aldrich ( dated 27.02.2014 r)Google Scholar
  14. Fauss E (2008) The silver nanotechnology commercial inventory. University of Virginia. Accessed 02 May 2014
  15. Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5:8950–8957CrossRefGoogle Scholar
  16. Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5–17CrossRefGoogle Scholar
  17. Ha TH, Jeong JY, Jung BH, Kim JK, Lim YT (2009) Cosmetic pigment composition containing gold or silver nano-particles. WO 2007011103 A1Google Scholar
  18. Heydarnejad MS, Yarmohammadi-Samani P, Dehkordi MM, Shadkhast M, Rahnama S (2014) Histopathological effects of nanosilver (Ag-NPs) in liver after dermal exposure during wound healing. Nanomed J 1:191–197Google Scholar
  19. Holladay RJ (2013) Toothpaste or tooth gel containing silver nano particles coated with silver oxide. US 20130017236 A1Google Scholar
  20. Horner CJ, Kumar A, Nieradka KR (2012) Nanosilver as a biocide in building materials. US 0272542 A1Google Scholar
  21. Hydrazine Hydrate Datasheet (2014) Sigma Aldrich ( dated 27.02.2014 r)Google Scholar
  22. Kader SS, Paul DP, Hoque SM (2014) Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method. Int J Mater Mech Manuf 2:5–8Google Scholar
  23. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905CrossRefGoogle Scholar
  24. Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2010) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B 82:513–518CrossRefGoogle Scholar
  25. Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, Yu IJ (2011) In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work 2:34–38CrossRefGoogle Scholar
  26. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  27. Koohi MK, Hejazy M, Asadi F, Asadian P (2011) Assessment of dermal exposure and histopathologic changes of different sized nano-silver in healthy adult rabbits. J Phys. doi: 10.1088/1742-6596/304/1/012028 Google Scholar
  28. Kovvuru SK, Mahita VN, Manjunatha BS, Babu BS (2012) Nanotechnology: the emerging science in dentistry. J Orofac Res 2:33–36Google Scholar
  29. Kowalski Z, Makara A, Banach M, Kowalski M (2010) Zastosowanie preparatów nanosrebra do oczyszczania powietrza z instalacji klimatyzacyjnej zakładów mięsnych. Przem Chem 89:434–437Google Scholar
  30. Kwon H, Yun H, Kim I, Go S (2006) Antibacterial paint containing nano silver particles and coating method using the same. US 0287112 A1Google Scholar
  31. Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914CrossRefGoogle Scholar
  32. Li WR, Xie XB, Shi QS, Zeng HY, Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122CrossRefGoogle Scholar
  33. Linkov I, Satterstorm FK, Corey LM (2008) Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4:167–171CrossRefGoogle Scholar
  34. Loghman A, Iraj SH, Naghi DA, Pejman M (2012) Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. Afr J Biotechnol 11:6207–6211Google Scholar
  35. Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zan V (2011) Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. Afr J Biotechnol 10:6799–6803Google Scholar
  36. Lu K (2013) Nanoparticulate materials: synthesis, characterization, and processing. Willey, New JerseyGoogle Scholar
  37. Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66CrossRefGoogle Scholar
  38. McFarland AD, van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062CrossRefGoogle Scholar
  39. Mehrbod P, Motamed N, Tabatabaian M, Soleimani Estyar R, Amini E, Shahidi M, Kheiri MT (2009) In vitro antiviral effect of nanosilver on influenza virus. Daru 17:88–93Google Scholar
  40. Nia JR (2009) Nanosilver for preservation and treatment of diseases in agriculture field. US 0075818 A1Google Scholar
  41. Niakan M, Azimi HR, Jafarian Z, Mohammadtaghi G, Niakan S, Mostafavizade SM (2013a) Evaluation of nanosilver solution stability against Streptococcus mutans, Staphylococcus aureus and Pseudomonas aeruginosa. Jundishapur J Microbiol 6:e8570. doi: 10.5812/jjm.8570 Google Scholar
  42. Niakan S, Niakan M, Hesaraki S, Nejad-moghaddam MR, Moradi M, Hanafiabdar M, Allamezadeh R, Sabouri M (2013b) Comparison the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol 6:e8341. doi: 10.5812/jjm.8341 Google Scholar
  43. OECD Guidelines for the Testing of Chemicals (2004) Daphnia sp., acute Immobilization Test Paris, France. Organization for Economic Cooperation and Development, Test No. 202Google Scholar
  44. OECD Guidelines for the Testing of Chemicals (2008) Subchronic inhalation toxicity: 90-day study. Organization for Economic Cooperation and Development, Test No. 474Google Scholar
  45. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Publ Health 10:5221–5238CrossRefGoogle Scholar
  46. Osuwa JC, Anusionwu PC (2011) Some advances and prospects in nanotechnology: a review. Asian J Inf Tech 10:96–100CrossRefGoogle Scholar
  47. Petrus EM, Tinakumari S, Chai LC, Ubong A, Tunung R, Elexson N, Chai LF, Son R (2011) A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int Food Res J 18:55–66Google Scholar
  48. Polyvinylpyrrolidone Datasheet (2014) Sigma Aldrich ( dated 27.02.2014 r)Google Scholar
  49. Prashant J, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63CrossRefGoogle Scholar
  50. Pulit J, Banach M, Kowalski Z (2011a) Nanosilver—making hard decision. Ecol Chem Eng S 18:185–195Google Scholar
  51. Pulit J, Banach M, Kowalski Z (2011b) Właściwości nanocząsteczek miedzi, platyny, srebra, złota i palladu. Czasopismo Techniczne. Chemia 108:197–209Google Scholar
  52. Pulit J, Banach M, Tymczyna L, Chmielowiec-Korzeniowska A (2012) Stan badań i kierunki zmian w otrzymywaniu nanostrukturalnego srebra. Przem Chem 91:929–936Google Scholar
  53. Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, Waugh S, Kenyon A, MacCuspie RI, Hackley VA, Castranova V (2013) Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles. J Toxicol Environ Health 76:651–668CrossRefGoogle Scholar
  54. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592CrossRefGoogle Scholar
  55. SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), European CommissionGoogle Scholar
  56. Schiffman SS (1998) Livestock odors: implications for human health and well-being. J Anim Sci 76:1343–1355Google Scholar
  57. Shahrokh S, Emtiazi G (2009) Toxicity and unusual biological behavior of nanosilver on Gram-positive and negative bacteria assayed by microtiter-plate. Eur J Biol Sci 1:28–31Google Scholar
  58. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol 3:68–171CrossRefGoogle Scholar
  59. Sharma VK (2013) Stability and toxicity of silver nanoparticles in aquatic environment: a review. ACS Symp Ser 1124:165–179CrossRefGoogle Scholar
  60. Sivolella S, Stellini E, Brunello G, Gardin C, Ferroni L, Bressan E, Zavan B (2012) Silver nanoparticles in alveolar bone surgery devices. J Nanomater. doi: 10.1155/2012/975842 Google Scholar
  61. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in sprague-dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20:567–574CrossRefGoogle Scholar
  62. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Meent D, Dekkers S, De Jong WH, Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar
  63. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350CrossRefGoogle Scholar
  64. Yan J, Cheng J (2002) Nanosilver—containing antibacterial and antifungal granules and methods for preparing and using the same. US 6379712 B1Google Scholar
  65. Yaoguang H, Xing H, Hong-liang L (2011) Skin care fancy soap. CN 102242026 AGoogle Scholar
  66. Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7:e8720. doi: 10.5812/jjm.8720 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jolanta Pulit-Prociak
    • 1
    Email author
  • Katarzyna Stokłosa
    • 2
  • Marcin Banach
    • 1
  1. 1.Cracow University of TechnologyCracowPoland
  2. 2.Koziegłowy Poultry PlantKoziegłowyPoland

Personalised recommendations