Skip to main content
Log in

Ecofriendly synthesis of 3-cyanopyridine derivatives by multi-component reaction catalyzed by animal bone meal

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Green organic synthesis is needed to face current environmental pollution. Many synthetic approaches have been developed to produce substituted cyanopyridines. However, only a few green methods are reported. This article reports a simple and convenient synthesis of substituted pyridines by one-pot multi-component reaction of 1,3-dicarbonyl compounds, aromatic aldehydes, malononitrile and alcohols, catalyzed by doped animal bone meal as catalyst. The reaction has several advantages such as high yields of 80–92 %, short reaction times of 10–15 min, easy purification processes and methodological simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  • Abe Y, Kayakiri H, Satoh S, Inoue T, Sawada Y, Inamura N, Asano M, Aramori I, Hatori C, Sawai H, Oku T, Tanaka H (1998) A novel class of orally active non-peptide bradykinin B2 receptor antagonists. 3. Discovering bioisosteres of the imidazo[1,2-a]pyridine moiety. J Med Chem 41:4062–4079

    Article  CAS  Google Scholar 

  • Aly AA (2006) Synthesis of polyfunctionally substituted pyrazolo-naphthyridine, pentaazanaphthalene, and heptaaza-phenanthrene derivatives. Phosphorus, Sulfur, Silicon Relat Elem 181:2395–2409

    Article  CAS  Google Scholar 

  • Bahrami K, Khodaei MM, Naali F, Yousefi BH (2013) Synthesis of polysubstituted pyridines via reactions of chalcones and malononitrile in alcohols using Amberlite IRA-400 (OH). Tetrahedron Lett 54:5293–5298

    Article  CAS  Google Scholar 

  • Baldwin JJ, Engelhardt EL, Hirschmann R, Ponticello GS, Atkinson JG, Wasson BK, Sweet CS, Scriabine A (1980) Heterocyclic analogs of the antihypertensive beta-adrenergic blocking agent (S)-2-[3-(tert-butylamino)-2-hydroxypropoxy]-3-cyanopyridine. J Med Chem 25:65–70

    Article  Google Scholar 

  • D’Souza DM, Müller TJJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108

    Article  Google Scholar 

  • Evdokimov NM, Kireev AS, Yakovenko AA, Antipin MY, Magedov IV, Kornienko A (2007) One-step synthesis of heterocyclic privileged medicinal scaffolds by a multi-component reaction of malononitrile with aldehydes and thiols. J Org Chem 72:3443–3453

    Article  CAS  Google Scholar 

  • Guo K, Thompson MJ, Reddy TRK, Mutter R, Chen B (2007) Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries. Tetrahedron 63:5300–5311

    Article  CAS  Google Scholar 

  • Hagimori M, Mizuyama N, Hisadome Y, Nagaoka J, Uedab K, Tominagab Y (2007) One-pot synthesis of polysubstituted pyridine derivatives using ketene dithioacetals. Tetrahedron 63:2511–2518

    Article  CAS  Google Scholar 

  • Hajbi Y, Suzenet F, Khouili M, Lazar S, Guillaumet G (2007) Polysubstituted 2,3-dihydrofuro[2,3-b]pyridines and 3,4-dihydro-2H-pyrano[2,3-b]pyridines via microwave-activated inverse electron demand Diels-Alder reactions. Tetrahedron 65:8286–8297

    Article  Google Scholar 

  • Hoefling WL, Elhaner D, Reckling E (1965) VEB Leund-Werke “Walter Ulbricht” Ger. 1, 193, 506; Chem Abstr 63, 6979

  • Khatoon S, Yadav AK (2004) Synthesis and antimicrobial screening of some new 4-imino-3,5,7-trisubstituted pyrido[2,3-d]pyrimidines and their ribofuranosides as potential chemotherapeutic agents. Phosphorus, Sulfur, Silicon Relat Elem 179:345–352

    Article  CAS  Google Scholar 

  • Manna F, Chimenti F, Bolasco A, Filippelli A, Palla A, Filippelli W, Lampa E, Mercantini R (1992) Anti-inflammatory, analgesic and antipyretic 4,6-disubstituted 3-cyanopyridine-2-ones and 3-cyano-2-aminopyridines. Eur J Med Chem 27:627–632

    Article  CAS  Google Scholar 

  • Mantr M, de Graaf O, Van Veldhoven J, Goblyos A, Von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Link R, De Vries H, Beukers MW, Brussee J, Ijzerman AP (2008) 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J Med Chem 51:4449–4455

    Article  Google Scholar 

  • Moussa HH, Chabaka LM, Zaki D (1983) Reactivity centres in the dimethoxybenzylidene acetophenone towards attack by active methylene compounds [Part X]: synthesis of five membered ring compounds. Egypt J Chem 26:469–477

    CAS  Google Scholar 

  • Movassaghi M, Hill MD (2006) Synthesis of substituted pyridine derivatives via the ruthenium-catalyzed cycloisomerization of 3-azadienynes. J Am Chem Soc 128:4592–4593

    Article  CAS  Google Scholar 

  • Oganisyan AS, Noravyan AS, Grigoryan MZ (2004) Condensed pyridopyrimidines. 7. Synthesis of condensed triazolo[4,3-c]- and tetrazolo[1,5-c]pyrimidines. Chem Heterocycl Compd 40:75–78

    Article  CAS  Google Scholar 

  • Price D, Chisholm A, Ryan D, Crockett A, Jones R (2010) The use of roflumilast in COPD: a primary care perspective. Prim Care Resp J 19:342–351

    Article  Google Scholar 

  • Quintela JM, Peinador C, Botana L, Estevez M, Riguera R (1997) Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]pyrimidines. Bioorg Med Chem 5:1543–1553

    Article  CAS  Google Scholar 

  • Ranu BC, Jana R, Sowmiah S (2007) An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. J Org Chem 72:3152–3154

    Article  CAS  Google Scholar 

  • Reddy TRK, Mutter R, Heal W, Guo K, Gillet V, Pratt S, Chen B (2006) Library design, synthesis, and screening: pyridine dicarbonitriles as potential prion disease therapeutics. J Med Chem 49:607–615

    Article  CAS  Google Scholar 

  • Reddy TR, Reddy GR, Reddy LS, Jammula S, Lingappa Y, Kapavarapu R, Meda CLT, Parsa KVL, Pal M (2012) Montmorillonite K-10 mediated green synthesis of cyano pyridines: their evaluation as potential inhibitors of phosphodiesterase type 4. Eur J Med Chem 48:265–274

    Article  Google Scholar 

  • Riadi Y, Mamouni R, Abrouki Y, El Haddad M, Saffaj N, El Antri S, Routier S, Guillaumet G, Lazar S (2010a) Animal bone meal (animal bone meal): a novel natural catalyst for thia-michael addition. Lett Org Chem 7:269–271

    Article  CAS  Google Scholar 

  • Riadi Y, Mamouni R, Azzallou R, Boulahjar R, Abrouki Y, El Haddad M, Routier S, Guillaumet G, Lazar S (2010b) Animal bone meal as an efficient catalyst for crossed-aldol condensation. Tetrahedron Lett 51:6715–6717

    Article  CAS  Google Scholar 

  • Riadi Y, Mamouni R, Azzallou R, El Haddad M, Routier S, Guillaumet G, Lazar S (2011) An efficient and reusable heterogeneous catalyst animal bone meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Tetrahedron Lett 52:3492–3495

    Article  CAS  Google Scholar 

  • Riadi Y, Abrouki Y, Mamouni R, El Haddad M, Routier S, Guillaumet G, Lazar S (2012) New eco-friendly animal bone meal catalysts for preparation of chalcones and aza-Michael adducts. Chem Cent J 6:60–67

    Article  CAS  Google Scholar 

  • Riadi Y, Abrouki Y, El Antri S, Mamouni R, El Haddad M, Routier S, Guillaumet G, Lazar S (2013) Efficient synthesis of a 2-amino-4H-chromene library by multi-component condensation catalyzed by animal bone meal in water. Int J Chem 34:1152–1156

    Google Scholar 

  • Shaabani A, Seyyedhamzeh M, Maleki A, Behnam M, Rezazadeh F (2009) Synthesis of fully substituted pyrazolo[3,4-b]pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett 50:2911–2913

    Article  CAS  Google Scholar 

  • Singh KN, Singh SK (2009) Microwave-assisted, one-pot multi-component synthesis of highly substituted pyridines of medicinal utility using KF/alumina. Arkivoc xiii:153–160

    Article  Google Scholar 

  • Song ZS, Zhao M, Desmond R, Devine P, Tschaen DM, Tillyer R, Frey L, Heid R, Xu F, Foster B, Li J, Reamer R, Volante R, Grabowski EJ, Dolling UH, Reider PJ (1999) Practical asymmetric synthesis of an endothelin receptor antagonist. J Org Chem 64:9658–9667

    Article  CAS  Google Scholar 

  • Sridhar M, Ramanaiah BC, Narsaiha C, Mahesh B, Kumarswamy M, Mallu KKR, Ankathi VM, Rao PS (2009) Novel ZnCl2-catalyzed one-pot multi-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines. Tetrahedron Lett 50:3897–3900

    Article  CAS  Google Scholar 

  • Thirumurugan P, Perumal PT (2009) InCl3 mediated one-pot synthesis of indol-3-yl pyridine and 2,2′-bipyridine derivatives through multi-component reaction. Tetrahedron 65:7620–7629

    Article  CAS  Google Scholar 

  • Trost BM, Gutierrez AC (2007) Ruthenium-catalyzed cyclo-isomerization-6π-cyclization: a novel route to pyridines. Org Lett 9:1473–1476

    Article  CAS  Google Scholar 

  • Wang GT, Wang X, Wang W, Hasvold LA, Sullivan G, Hutchins CW, O’Conner S, Gentiles R, Sowin T, Cohen J, Gu WZ, Zhang H, Rosenberg SH, Sham HL (2005) Design and synthesis of o-trifluoromethylbiphenyl substituted 2-amino-nicotinonitriles as inhibitors of farnesyltransferase. Bioorg Med Chem Lett 15:153–158

    Article  CAS  Google Scholar 

  • Xin X, Yan W, Santosh K, Xu L, Yingjie L, Dewen D (2010) Efficient one-pot synthesis of substituted pyridines through multi-component reaction. Org Biomol Chem 8:3078–3082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the “Volubilis” Hubert Curien Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gérald Guillaumet or Saïd Lazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riadi, Y., Mamouni, R., Routier, S. et al. Ecofriendly synthesis of 3-cyanopyridine derivatives by multi-component reaction catalyzed by animal bone meal. Environ Chem Lett 12, 523–527 (2014). https://doi.org/10.1007/s10311-014-0478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0478-y

Keywords

Navigation