Skip to main content

Advertisement

Log in

Water pollutant monitoring with aquatic bryophytes: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Bryophytes are non-vascular plants with large biomass and high production level in freshwaters. Aquatic bryophytes are used to assess the ecological status. They are a stress-tolerant group, and many species have a wide trophic range. Aquatic bryophytes are used as indicators by the presence or absence of a pollutant, or as monitors to measure pollutant concentrations. Here, we review major advances in bryomonitoring from a range of countries, mainly in Europe. Monitored elements include Ba, Cd, Cr, Cu, Co, Ni, Pb, Zn, Fe, Mn, V, 137Cs, 134Cs, 235U, 236Ra, 232Th and 40K. We illustrate the advantages of low-cost methods for monitoring water quality. Biomonitoring includes (1) passive observation and analysis of native bryophytes and (2) active biomonitoring based on species transplantation for a fixed exposure period. Two widespread northern hemisphere aquatic mosses, Fontinalis antipyretica and Platyhypnidium riparioides, are the most common biomonitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguiar FC, Feio MJ, Ferreira MT (2011) Choosing the best method for stream bioassessment using macrophyte communities: Indices and predictive models. Ecol Indic 11:379–388

    Google Scholar 

  • Benson-Evans K, Williams PF (1976) Transplanting aquatic bryophytes to assess river pollution. J Bryol 9:81–91

    Google Scholar 

  • Besse J-P, Geffard O, Coquery M (2012) Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. Trends Anal Chem 36:113–127

    CAS  Google Scholar 

  • Birk S, Korte T, Hering D (2006) Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics. Hydrobiologia 566:417–430

    Google Scholar 

  • Birk S, Willby N (2010) Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 652:149–163

    Google Scholar 

  • Bruns I, Siebert A, Baumbach R, Miersch J, Günther D, Markert B, Krauβ G-J (1995) Analysis of heavy metals and sulphur-rich compounds in the water moss Fontinalis antipyretica L. ex Hedw. Fresen J Anal Chem 353:101–104

    CAS  Google Scholar 

  • Bruns I, Friese K, Markert B, Krauss G-J (1997) The use of Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. 2. Heavy metal accumulation and physiological reaction of Fontinalis antipyretica L. ex Hedw. in active biomonitoring in the River Elbe. Sci Total Environ 204:161–176

    CAS  Google Scholar 

  • Burton MAS (1986) Biological monitoring. MARC report 32. Monitoring and Assessment Research Centre, King’s College, University of London, London

  • Burton MAS (1990) Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. Bot J Lin Soc 104:267–286

    Google Scholar 

  • Burton MAS, Peterson PJ (1979) Metal accumulation by aquatic bryophytes from polluted mine streams. Environ Pollut 19:39–46

    CAS  Google Scholar 

  • Caines LA, Watt AW, Wells DE (1985) The uptake and release of some trace metals by aquatic bryophytes in acidified waters in Scotland. Environ Pollut 10:1–18

    CAS  Google Scholar 

  • Cairns J Jr, van der Schalie WH (1980) Biological monitoring, part I: early warning systems. Water Res 14:1179–1196

    Google Scholar 

  • Carballeira A, López J (1997) Physiological and statistical methods to identify background levels of metals in aquatic bryophytes: dependence on lithology. J Environ Qual 26:980–988

    CAS  Google Scholar 

  • Carballeira A, Vázquez MD, López J (2001) Biomonitoring of sporadic acidification of rivers on the basis of release of preloaded cadmium from the aquatic bryophyte Fontinalis antipyretica Hedw. Environ Pollut 111:95–106

    CAS  Google Scholar 

  • Cenci RM (2000) The use of aquatic moss (Fontinalis antipyretica) as monitor of contamination in standing and running waters: limits and advantages. J Limnol 60(Suppl. 1):53–61

    Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2006) Assessment of intermittent trace element pollution by moss bags. Environ Pollut 144:886–892

    CAS  Google Scholar 

  • Cesa M, Campisi B, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2008) A factor influence study of trace element bioaccumulation in moss bags. Arch Environ Contam Toxicol 55(3):386–396

    CAS  Google Scholar 

  • Cesa M, Azzalini G, De Toffol V, Fontanive M, Fumagalli F, Nimis PL, Riva G (2009a) Moss bags as indicators of trace metal contamination in Pre-alpine streams. Plant Biosyst 143(1):173–180

    Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2009b) S.T.R.E.A.M., System for Trace Element Assessment with Mosses. An equation to estimate mercury concentration in freshwaters. Chemosphere 75:858–865

    CAS  Google Scholar 

  • Cesa M, Bizzotto A, Ferraro C, Fumagalli F, Nimis PL (2010) Palladio, an index of trace element alteration for the river Bacchiglione based on Rhynchostegium riparioides moss bags. Water Air Soil Poll 208:59–77

    CAS  Google Scholar 

  • Claveri B, Guérold F, Pihan JC (1995) Use of transplanted mosses and autochthonous liverworts to monitor trace metals in acidic and non-acidic headwater streams (Vosges Mountains, France). Sci Total Environ 175:235–244

    CAS  Google Scholar 

  • Cruz de Carvalho R, Branquinho C, Marques da Silva J (2011) Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234(1):195–205

    CAS  Google Scholar 

  • Delépée R, Pouliquen H, Le Bris H (2004) The bryophyte Fontinalis antipyretica Hedw. bioaccumulates oxytetracycline, flumequine and oxolinic acid in the freshwater environment. Sci Total Environ 322(1–3):243–253

    Google Scholar 

  • Demars BOL, Britton A (2011) Assessing the impacts of small scale hydroelectric schemes on rare bryophytes and lichens. Scottish Natural Heritage and Macaulay Land Use Institute Funded Report. Scottish Natural Heritage Commissioned Report No. 421

  • Dietz J (1972) Die Anreicherung von Schwermetallen in submersen Pflanzen. Geawasser/Abwasser 113:269–273

    CAS  Google Scholar 

  • Downes BJ, Entwisle TJ, Reich P (2003) Effects on flow regulation on disturbance frequencies and in-channel bryophytes and macroalgae in some upland streams. River Res Applic 19:27–42

    Google Scholar 

  • Duncan MJ, Suren AM, Brown SLR (1999) Assessment of streambed stability in steep, bouldery streams: development of a new analytical technique. J N Am Benthol Soc 18(4):445–456

    Google Scholar 

  • During HJ (1992) Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford

    Google Scholar 

  • Empain A (1976) Les bryophytes aquatiques utilisés comme traceurs de la contamination en métaux lourds des eaux douces. In: Symposium Mémoires de la Société Royale de Botanique de Belgique, 20 mars 1976, Bruxelles, vol 7, 141–156

  • Empain AM (1977) Ecologie des populations bryophytes aquatiques de la Meuse de la Sambre et de la Somme. Doctoral Dissertation, University of Liege, Belgium

  • Empain AM (1988) A posteriori detection of heavy metal pollution of aquatic habitats. In: Glime JM (ed) Methods in bryology. Proc. bryol. method. workshop, Mainz, Hattori Bot Lab, Nichinan, Japan, pp 213–220

  • Empain A, Lambinon J, Mouvet C, Kirchmann R (1980) Utilisation des bryophytes aquatiques et subaquatiques comme indicateurs biologiques de la qualité des eaux courantes. In: Pesson P (ed) La Pollution des Eaux Continentales, 2nd edn. Gauthier-Villars, Paris, pp 195–223

    Google Scholar 

  • Englund G, Jonsson B-G, Malmqvist B (1997) Effects of flow regulation on bryophytes in North Swedish rivers. Biol Cons 79:79–86

    Google Scholar 

  • European Commission (2010) Guidance on chemical monitoring of sediment and biota under the Water Framework Directive. Guidance document no 25. Technical report 2010.3991. Common Implementation Strategy for the Water Framework Directive. EC, Brussels

  • Feio MJ, Aguiar FC, Almeida SFP, Ferreira MT (2012) AQUAFLORA: A predictive model based on diatoms and macrophytes for streams water quality assessment. Ecol Indic 18:586–598

    CAS  Google Scholar 

  • Ferreira D, Ciffroy P, Tusseau-Vuillemin M-H, Garnier C, Garnier J-M (2009) Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: Influence of water cationic composition (Ca, Mg, Na and pH). Chemosphere 74:1117–1124

    CAS  Google Scholar 

  • Figueira R, Ribeiro T (2005) Transplants of aquatic mosses as biomonitors of metals released by a mine effluent. Environ Pollut 136:293–301

    CAS  Google Scholar 

  • Frisque G, Galoux M, Bernes A (1983) Accumulation de deux micropolluants (les plychlorobiphényles et le gammaHCH) par des bryophytes aquatiques de la Meuse. Meded Fac Landbouwwet, Rijksuniv Gent 48:971–983

    CAS  Google Scholar 

  • García-Álvaro MA, Martínez-Abaigar J, Núñez-Olivera E, Beaucourt N (2000) Element concentrations and enrichment ratios in the aquatic moss Rhynchostegium riparioides along the River Iregua (La Riojia, Northern Spain). Bryologist 103(3):518–533

    Google Scholar 

  • Gecheva G, Yurukova L, Ganeva A (2011) Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bull Environ Contam Toxicol 87(4):480–485

    CAS  Google Scholar 

  • Gecheva G, Yurukova L (2013) Water quality monitoring by aquatic bryophytes. In: Lichtfouse E et al (eds) Green materials for energy, products and depollution, environmental chemistry for a sustainable world 3. Springer Science+Business Media, Dordrecht. doi:10.1007/978-94-007-6836-99

  • Gecheva G, Yurukova L, Cheshmedjiev S (2013) Patterns of aquatic macrophyte species composition and distribution in Bulgarian rivers. Turk J Bot 37:99–110

    Google Scholar 

  • Gimeno C, Puche F (1999) Chlorophyll content and morphological changes in cellular structure of Rhynchostegium riparioides (Hedw.) Card. (Brachytheciaceae, Musci) and Fontinalis hypnoides Hartm. (Fontinalaceae, Musci) in response to water pollution and transplant containers on Palancia river (East Spain). Nova Hedwigia 68:197–216

    Google Scholar 

  • Glime JM (2003) Fontinalis. Available via http://www.bio.umass.edu/biology/conn.river/fontinal.html. Accessed 5 July 2012

  • Glime JM (2007) Bryophyte ecology. Volume 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Available via http://www.bryoecol.mtu.edu. Accessed 13 July 2012

  • Glime JM, Vitt DH (1987) A comparison of bryophyte species diversity and structure of montane streams and stream banks. Can J Bot 65:1824–1837

    Google Scholar 

  • Gonçalves EPR, Boaventura RAR, Mouvet C (1992) Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave river basin (Portugal). Sci Total Environ 114:7–24

    Google Scholar 

  • Grolle R, Long DG (2000) An annotated check-list of the hepaticae and anthocerotae of Europe and Macaronesia. J Bryol 22:103–140

    Google Scholar 

  • Gurnell AM, O’Hare JM, O’Hare MT, Dunbar MJ, Scarlett PM (2009) An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers. Geomor 116(1–2):135–144

    Google Scholar 

  • Hill MO, Bell N, Bruggeman-Nannenga MA, Brugués M, Cano MJ, Enroth J, Flatberg KI, Frahm J-P, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Hyvönen J, Ignatov MS, Lara F, Mazimpaka V, Muñoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28(3):198–267

    Google Scholar 

  • Hime S, Bateman IJ, Posen P, Hutchins M (2009) A transferable water quality ladder for conveying use and ecological information within public surveys. CSERGE working paper EDM 09-01. University of East Anglia

  • Hofmann A, Winkler S (1990) Effects of atrazine in environmentally relevant concentrations on submerged macrophytes. Arch Hydrobiol 118:69–80

    CAS  Google Scholar 

  • Hongve D, Brittain JE, Bjørnstad HE (2002) Aquatic mosses as a monitoring tool for 137Cs contamination in streams and rivers - a field study from central southern Norway. J Environ Radioact 60:139–147

    CAS  Google Scholar 

  • Hunt GJ (1983) Radioactivity in surface and coastal waters of the British Isles, 1981. Aquatic environment monitoring report no 9. Ministry of Agriculture, Fisheries and Food Lowestoft, Suffolk

  • Jackson PP, Bobinson NJ, Whitton BA (1991) Low molecular weight metal complexes in the freshwater moss Rhinchostegium riparoides exposed to elevated concentrations of Zn, Cu, Cd, and Pb in the laboratory and field. Environ Exp Bot 31(3):359–366

    CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Kelly MG, Girton C, Whitton BA (1987) Use of moss-bags for monitoring heavy metals in rivers. Wat Res 21(11):1429–1435

    CAS  Google Scholar 

  • Kelly MG, Whitton BA (1989) Interspecific differences in Zn, Cd and Pb accumulation by freshwater algae and bryophytes. Hydrobiologia 175:1–11

    CAS  Google Scholar 

  • Kirchmann R, Lambinon J (1973) Plants as bioindicators of the contamination of a river by the effluents of a PWR nuclear power station. Assessment of the radioactive releases of the Sena reactor through aquatic and ripicolous plants of the river Meuse. Bull Soc Roy Bot Belg 106:187–201

    CAS  Google Scholar 

  • Kovács M (1992) Biological indicators of water pollution. In: Kovács M (ed) Biological indicators in environmental protection. Akadémiai Kiadó, Budapest, pp 120–130

    Google Scholar 

  • Kovács M, Podani J (1986) Bioindication: A short review on the use of plants as indicators of heavy metals. Acta Biol Hung 37:19–29

    Google Scholar 

  • Lang P, Murphy KJ (2012) Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia 679:1–17

    CAS  Google Scholar 

  • Lingsten L (1991) Levels of heavy metals in aquatic mosses in acidified water bodies. Verb Internat Verein Limnol 24:2228–2230

    CAS  Google Scholar 

  • López J, Carballeira A (1993) Interspecific differences in metal bioaccumulation and plant-water concentration ratios in five aquatic bryophytes. Hydrobiologia 263:95–107

    Google Scholar 

  • López J, Vazquez MD, Carballeira A (1994) Stress responses and metal exchange kinetics following transplant of the aquatic moss Fontinalis antipyretica. Freshw Biol 32:185–198

    Google Scholar 

  • M A F F (Ministry of Agriculture, Fisheries and Food) (1967) Radioactivity of surface and coastal waters of the British Isles. Report FRL I. Ministry of Agriculture, Fisheries and Food, Lowestoft, Suffolk

  • McLean RO, Jones K (1975) Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshw Biol 5:431–444

    Google Scholar 

  • Manning WJ, Feder WA (1980) Biomonitoring air pollutants with plants. Appl. Sci. Publ, London

    Google Scholar 

  • Markert B (1991) Inorganic chemical investigation in the forest biosphere reserve near Kalinin, USSR. I. Mosses and peat profiles as bioindicators for different chemical elements. Vegetatio 95:127–135

    Google Scholar 

  • Markert B (1996) Instrumental Element and Multi-element Analyses of Plant Samples. Wiley, Chichester

    Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier Science Ltd, Oxford, pp 3–39

    Google Scholar 

  • Markert B (2008) From biomonitoring to integrated observation of the environment – the multi-markered bioindication concept. Ecol Chem Eng S 15(3):315–333

    CAS  Google Scholar 

  • Martin MH, Coughtrey PJ (1982) Biological monitoring of heavy metal pollution. Appl Sci Publ, London

    Google Scholar 

  • Mersch J, Johansson L (1993) Transplanted aquatic mosses and freshwater mussels to investigate the trace metal contamination in the rivers Meurthe and Plaine, France. Environ Technol 14:1027–1036

    CAS  Google Scholar 

  • Mersch J, Claveri B (1998) Les bryophytes aquatiques comme outil de surveillance de la contamination des eaux courantes par les micropolluants métalliques: modalités d’interprétation des données. Etude Inter-Agences 55, France

  • Mersch J, Pihan JC (1993) Simultaneous assessment of environmental impact on condition and trace metals availability in zebra mussels Dreissena polymorpha transplanted into the Wilz River, Luxembourg. Comparison with the aquatic moss Fontinalis antipyretica. Arch Environ Contam Toxicol 25:353–364

    CAS  Google Scholar 

  • Mishev P, Damyanova A, Yurukova L (1996) Mosses as biomonitors of airborne pollution in the northern part of Rila Mountain. Part II. Radioactivity of mosses. In: Carbonnel JP, Stamenov JN (eds) Observatoire de montagne de Moussala—OM2, vol 4, pp 137–141, Sofia

  • Mouvet C (1984) Accumulation of chromium and copper by the aquatic moss Fontinalis antipyretica L. ex Hedw. transplanted in a metal-contaminated river. Environ Technol Lett 5:541–548

    CAS  Google Scholar 

  • Mouvet C (1986) Métaux lourds et Mousses aquatiques, synthèse méthodologique. Université de Metz—Laboratoire d’Ecologie, rapport de contrat à l’Agence de l’Eau Rhin-Meuse et l’Agence de l’Eau Rhône-Méditerranée-Corse, France

  • Mouvet C, Galoux M, Bernes A (1985) Monitoring of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCH) in freshwater using aquatic moss Cinclidotus danubicus. Sci Total Environ 44:253–267

    CAS  Google Scholar 

  • Mouvet C, Pattée E, Cordebar P (1986) Utilisation des mousses aquatiques pour I’identification et la localisatiom précise de sources de pollution métallique multiforme. Acta Ecol 7(1):77–91

    CAS  Google Scholar 

  • O’Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T (2006) Macrophyte communities of European streams with altered physical habitat. Hydrobiologia 566:197–210

    Google Scholar 

  • O’Hare JM, O’Hare MT, Gurnell AM, Dunbar MJ, Scarlett PM, Laize C (2011) Physical constraints on the distribution of macrophytes linked with flow and sediment dynamics in British rivers. River Res Applic 27:671–683

    Google Scholar 

  • Pirc S (2003) Aquatic mosses as sampling medium in geochemistry. RMZ Mater Geoenviron 50(4):735–763

    CAS  Google Scholar 

  • Roy S, Sen CK, Hanninen O (1996) Monitoring of polycyclic aromatic hydrocarbons using moss bags: Bioaccumulation and responses of antioxidant enzymes in Fontinalis antipyretica Hedw. Chemosphere 32:2305–2315

    CAS  Google Scholar 

  • Samecka-Cymerman A (1991) Contents of arsenic, vanadium, germanium and other elements in aquatic liverwort Scapania undulata (L.) Dum. growing in the Sudety Mountains. Pol Arch Hydrobiol 38(1): 79–84

    Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1992) Anomalous elemental composition of aquatic bryophytes near barite zones in the Sowie Mts. (Poland). J Geochem Explor 43:213–221

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1993) Scapania undulata (L.) Dum. and other aquatic bryophytes as indicators of mineralization in Poland. J Geochem Explor 46:325–334

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1994) Macro- and microelements in bryophytes from serpentinite and greenstone streams. Pol Arch Hydrobiol 41:431–449

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (1999) Background concentrations of heavy metals in aquatic bryophytes used for biomonitoring in basaltic areas (a case study from central France). Environ Geol 39(2):117–122

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2002) Heavy metals in aquatic bryophytes from the Ore Mountains (Germany). Ecotoxicol and Environ Saf 52:203–210

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kolon K, Kempers AJ (2005) A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitor of water polluted with heavy metals. Sci Total Environ 341:97–107

    CAS  Google Scholar 

  • Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2007) Self-organizing feature map (neural networks) as a tool in classification of the relations between chemical composition of aquatic bryophytes and types of streambeds in the Tatra national park in Poland. Chemosphere 67:954–960

    CAS  Google Scholar 

  • Satake K, Takamatsu T, Soma M, Shibata K, Nishikawa M, Say PJ, Whitton BA (1989) Lead accumulation and location in the shoots of the aquatic liverwort Scapania undulata (L.) Dum. in stream water at Greenside Mine, England. Aquat Bot 33:111–122

    CAS  Google Scholar 

  • Say PJ, Harding JPC, Whitton BA (1981) Aquatic mosses as monitors of heavy metal contamination in the river Etherow, Great Britain. Environ Pollut 2:295–307

    CAS  Google Scholar 

  • Say PJ, Whitton BA (1983) Accumulation of heavy metals by aquatic mosses. I. Fontinalis antipyretica. Hydrobiologia 100:245–260

    CAS  Google Scholar 

  • Scarlett P, O’Hare M (2006) Community structure of in-stream bryophytes in English and Welsh rivers. Hydrobiologia 553:143–152

    Google Scholar 

  • Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34:283–301

    Google Scholar 

  • Siebert A, Bruns I, Krauss G-J, Miersch J, Markert B (1996) The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. 1. Fundamental investigations into heavy metal accumulation in Fontinalis antipyretica L. ex Hedw. Sci Total Environ 177:137–144

    CAS  Google Scholar 

  • Slack NG, Glime J (1985) Niche relationship of mountain stream bryophytes. The Bryologist 88:1–18

    Google Scholar 

  • Steinnes E, Rühling Å, Lippo H, Mäkinen A (1997) Reference materials foe large-scale metal deposition surveys. Accred Qual Assur 2:243–249

    CAS  Google Scholar 

  • Steubing L (1976) Niedere und höhere pflanzen als indikatoren für immissionsbelastungen. Daten Dok Umweltschutz 19:13–27

    CAS  Google Scholar 

  • Stöcker G (1980) Methodishe und theoretishe Grundlangen der Bioindikation (Bioindikation 1). In: Schubert R, Schuh J (eds) Martin Luther Universität, Halle, pp 10–21

  • Stream Bryophyte Group (1999) Roles of bryophytes in stream ecosystems. J N Am Benthol Soc 18(2):151–184

    Google Scholar 

  • Suren A (1993) Bryophytes and associated invertebrates in first-order alpine streams of Arthur’s Pass, New Zealand. NZ J Mar Freshw Res 27:479–494

    Google Scholar 

  • Suren AM (1996) Bryophyte distribution patterns in relation to macro-, meso-, and micro-scale variables in South Island, New Zealand streams. New Zeal J Mar Fresh 30:501–523

    Google Scholar 

  • Suren AM, Smart GM, Smith RA, Brown SLR (2000) Drag coefficients of stream bryophytes: experimental determinations and ecological significance. Freshw Biol 45:309–317

    Google Scholar 

  • Suren AM, Duncan MJ (1999) Rolling stones and mosses: effect of substrate stability on bryophyte communities in streams. J N Am Benthol Soc 18(4):457–467

    Google Scholar 

  • Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O’Hare M (2006) European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566:211–234

    CAS  Google Scholar 

  • Tyler G (1972) Heavy metals pollute nature may reduce productivity. Ambio 1:57–59

    Google Scholar 

  • Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253

    Google Scholar 

  • Wehr JD, Whitton BA (1983a) Accumulation of heavy metals by aquatic mosses. 2: Rhynchostegium riparioides. Hydrobiologia 100:261–284

    CAS  Google Scholar 

  • Wehr JD, Whitton BA (1983b) Accumulation of heavy metals by aquatic mosses. 3: seasonal changes. Hydrobiologia 100:285–291

    CAS  Google Scholar 

  • Wehr JD, Empain A, Mouvet C, Say PJ, Whitton BA (1983) Methods for processing aquatic mosses used as monitors of heavy metals. Water Res 17(9):985–992

    CAS  Google Scholar 

  • Whitton BA (2003) Use of plants for monitoring heavy metals in freshwaters. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Kluwer Academic/Plenum Publishers, New York, pp 43–63

    Google Scholar 

  • Whitton BA, Say PJ, Jupp BP (1982) Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Environ Pollut 3:299–316

    CAS  Google Scholar 

  • Union European (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Communit L 327:1–72

    Google Scholar 

  • Union European (2008) Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off J Eur Communit L 348:84–97

    Google Scholar 

  • Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, Cambridge

    Google Scholar 

  • Vanderpoorten A, Klein J-P, Stieperaere H, Tremolieres M (1999) Variations of aquatic bryophyte assemblages in the Rhine Rift related to water quality. 1. The Alsatian Rhine floodplain. J Bryol 21:17–23

    Google Scholar 

  • Vázquez MD, López L, Carballeira A (1999) Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Saf 44:12–24

    Google Scholar 

  • Vázquez MD, Fernández JA, López L, Carballeira A (2000) Effects of water acidity and metal concentration on accumulation and within-plant distribution of metals in the aquatic bryophyte Fontinalis antipyretica. Water Air Soil Poll 120:1–19

    Google Scholar 

  • Vázquez MD, Wappelhorst O, Markert B (2004) Determination of 28 elements in aquatic moss Fontinalis antipyretica Hedw. and water from the upper reaches of the river Nysa (CZ, D), by ICP-MS, ICP-OES and AAS. Water Air Soil Poll 152:153–172

    Google Scholar 

  • Vázquez MD, Fernández JÁ, Real C, Villares R, Aboal JR, Carballeira A (2007) Design of an aquatic biomonitoring network for an environmental specimen bank. Sci Total Environ 388(1–3):357–371

    Google Scholar 

  • Yurukova LD, Ganeva AS, Damyanova AA (1996) Aquatic bryophytes as bioconcentrators of macro- and microelements. In: Carbonnel JP, Stamenov JN (eds) Observatorie de montagne de Moussala, OM2, 4. Bulgarian Academy of Sciences, Sofia, pp 127–136

    Google Scholar 

  • Yurukova L, Gecheva G (2004) Biomonitoring in Maritsa River using aquatic bryophytes. J Environ Prot Ecol 5(4):729–735

    CAS  Google Scholar 

  • Yurukova L, Gecheva G (2003) Active and passive biomonitoring using Fontinalis antipyretica in Maritsa River, Bulgaria. J Balkan Ecol 6(4):390–397

    CAS  Google Scholar 

  • Yurukova L, Damyanova A, Ivanov K, Janminchev V (1997) Bioaccumulation capacity of Fontinalis antipyretica from Musalenska Bistrica River, Rila Mountain. In: Carbonnel JP, Stamenov JN (eds) Observatorie de montagne de Moussala, OM2, 6. Bulgarian Academy of Sciences, Sofia, pp 77–86

    Google Scholar 

Download references

Acknowledgments

This review was completed through the combined efforts of numerous scientists, who dedicated their researches on bryophytes and monitoring. Those authors have supported our interest in aquatic bryophytes and guided us. To all of them we are exceedingly grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gana Gecheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gecheva, G., Yurukova, L. Water pollutant monitoring with aquatic bryophytes: a review. Environ Chem Lett 12, 49–61 (2014). https://doi.org/10.1007/s10311-013-0429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-013-0429-z

Keywords

Navigation