Skip to main content

Titanium dioxide photocatalysis for pharmaceutical wastewater treatment

Abstract

Heterogeneous photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a promising treatment technology for water purification. The effectiveness of this oxidation technology for the destruction of pharmaceuticals has also been demonstrated in numerous studies. This review highlights recent research on TiO2 photocatalytic treatment applied to the removal of selected pharmaceuticals. The discussions are tailored based on the therapeutic drug classes as the kinetics and mechanistic aspects are compound dependent. These classes of pharmaceuticals were chosen because of their environmental prevalence and potential adverse effects. Optimal operational conditions and degradation pathways vary with different pharmaceutical compounds. The main conclusion is that the use of TiO2 photocatalysis can be considered a state-of-the-art pharmaceutical wastewater treatment methodology. Further studies are, however, required to optimize the operating conditions for maximum degradation of multiple pharmaceuticals in wastewater under realistic conditions and on an industrial scale.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

References

  1. Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B-Environ 74(3–4):233–241. doi:10.1016/j.apcatb.2007.02.017

    Google Scholar 

  2. Abellán MN, Giménez J, Esplugas S (2009) Photocatalytic degradation of antibiotics: the case of sulfamethoxazole and trimethoprim. Catal Today 144(1–2):131–136. doi:10.1016/j.cattod.2009.01.051

    Google Scholar 

  3. Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010a) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161(1–2):53–59. doi:10.1016/j.cej.2010.04.020

    CAS  Google Scholar 

  4. Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010b) UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep Sci Technol 45(11):1564–1570. doi:10.1080/01496395.2010.487463

    CAS  Google Scholar 

  5. Agüera A, Estrada LAP, Ferrer I, Thurman EM, Malato S, Fernández-Alba AR (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J Mass Spectrom 40(7):908–915. doi:10.1002/jms.867

    Google Scholar 

  6. Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Chem Eng J 189–190:275–282. doi:10.1016/j.cej.2012.02.072

    Google Scholar 

  7. An TC, Yang H, Li GY, Song WH, Cooper WJ, Nie XP (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl Catal B-Environ 94(3–4):288–294. doi:10.1016/j.apcatb.2009.12.002

    CAS  Google Scholar 

  8. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59. doi:10.1016/s0920-5861(99)00102-9

    CAS  Google Scholar 

  9. Andreozzi R, Marotta R, Pinto G, Pollio A (2002) Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res 36(11):2869–2877. doi:10.1016/s0043-1354(01)00500-0

    CAS  Google Scholar 

  10. Andreozzi R, Marotta R, Paxéus N (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319–1330. doi:10.1016/s0045-6535(02)00769-5

    CAS  Google Scholar 

  11. Augilar CA, Montalvo C, Ceron JG, Moctezuma E (2011) Photocatalytic degradation of acetaminophen. Int J Environ Res 5(4):1071–1078

    Google Scholar 

  12. Augugliaro V, Bellardita M, Loddo V, Palmisano G, Plamisano L, Yurdakal S (2012) Overview of oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C-Photochem Rev 13(3):224–245. doi:10.1016/j.jphotochemrev.2012.04.003

    CAS  Google Scholar 

  13. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77(5):445–459. doi:10.1016/j.solener.2004.03.031

    CAS  Google Scholar 

  14. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43(3):597–603. doi:10.1021/es801845a

    CAS  Google Scholar 

  15. Boscá F, Luisa Marín M, Miranda MA (2001) Photoreactivity of the nonsteroidal anti-inflammatory 2-arylpropionic acids with photosensitizing side effects. Photochem and Photobio 74(5):637–655. doi:10.1562/0031-8655(2001)0740637POTNAI2.0.CO2

    Google Scholar 

  16. Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edition. Pure Appl Chem 79(3):293–465. doi:10.1351/pac200779030293

    CAS  Google Scholar 

  17. Calza P, Pazzi M, Medana C, Baiocchi C, Pelizzetti E (2004) The photocatalytic process as a tool to identify metabolitic products formed from dopant substances: the case of buspirone. J Pharm Biomed Anal 35(1):9–19. doi:10.1016/j.jpba.2004.01.001

    CAS  Google Scholar 

  18. Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B-Environ 67(3–4):197–205. doi:10.1016/j.apcatb.2006.04.021

    CAS  Google Scholar 

  19. Calza P, Medana C, Padovano E, Giancotti V, Baiocchi C (2012) Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom 26(15):1687–1704. doi:10.1002/rcm.6279

    CAS  Google Scholar 

  20. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926. doi:10.1016/j.watres.2004.03.029

    CAS  Google Scholar 

  21. Carbonaro S, Sugihara MN, Strathmann TJ (2013) Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent. Appl Catal B-Environ 129:(1–12). doi:10.1016/j.apcatb.2012.09.014

  22. Choina J, Kosslick H, Fischer Ch, Flechsig G-U, Frunza L, Schulz A (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over Titania catalyst. Appl Catal B-Environ 129:589–598. doi:10.1016/j.apcatb.2012.09.053

    CAS  Google Scholar 

  23. Chong MN, Jin B (2012) Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater 199:135–142. doi:10.1016/j.jhazmat.2011.10.067

    Google Scholar 

  24. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027. doi:10.1016/j.watres.2010.02.039

    CAS  Google Scholar 

  25. Dai CM, Zhou XF, Zhang YL, Duan YP, Qiang ZM, Zhang TC (2012) Comparative study of the degradation of carbamazepine in water by advanced oxidation processes. Environ Technol 33(10):1101–1109. doi:10.1080/09593330.2011.610359

    CAS  Google Scholar 

  26. Dalrymple OK, Yeh DH, Trotz MA (2007) Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol 82(2):121–134. doi:10.1002/jctb.1657

    CAS  Google Scholar 

  27. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938. doi:10.2307/3434573

    CAS  Google Scholar 

  28. Dimitrakopoulou D, Rethemiotaki I, Frontistis Z, Xekoukoulotakis NP, Venieri D, Mantzavinos D (2012) Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis. J Environ Manage 98:168–174. doi:10.1016/j.jenvman.2012.01.010

    CAS  Google Scholar 

  29. Doll TE, Frimmel FH (2004) Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials—determination of intermediates and reaction pathways. Water Res 38(4):955–964. doi:10.1016/j.watres.2003.11.009

    CAS  Google Scholar 

  30. Doll TE, Frimmel FH (2005a) Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res 39(2–3):403–411. doi:10.1016/j.watres.2004.09.016

    CAS  Google Scholar 

  31. Doll TE, Frimmel FH (2005b) Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal Today 101(3–4):195–202. doi:10.1016/j.cattod.2005.03.005

    CAS  Google Scholar 

  32. Elmolla ES, Chaudhuri M (2010a) Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J Hazard Mater 173(1–3):445–449. doi:10.1016/j.jhazmat.2009.08.104

    CAS  Google Scholar 

  33. Elmolla ES, Chaudhuri M (2010b) Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 256(1–3):43–47. doi:10.1016/j.desal.2010.02.019

    CAS  Google Scholar 

  34. Elmolla ES, Chaudhuri M (2010c) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252(1–3):46–52. doi:10.1016/j.desal.2009.11.003

    CAS  Google Scholar 

  35. Felis E, Marciocha D, Surmacz-Gorska J, Miksch K (2007) Photochemical degradation of naproxen in the aquatic environment. Water Sci Technol 55(12):281–286. doi:10.2166/wsat.2007.417

    CAS  Google Scholar 

  36. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159. doi:10.1016/j.aquatox.2005.09.009

    CAS  Google Scholar 

  37. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357. doi:10.1021/cr00017a016

    CAS  Google Scholar 

  38. Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B-Environ 99(3–4):398–406. doi:10.1016/j.apcatb.2010.05.014

    CAS  Google Scholar 

  39. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. doi:10.1016/j.surfrep.2008.10.001

    CAS  Google Scholar 

  40. Garciá-Araya JF, Beltrán FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85(6):798–804. doi:10.1002/jctb.2363

    Google Scholar 

  41. Giraldo AL, Penuela GA, Torres-Palma RA, Pino NJ, Palominos RA, Mansilla HD (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44(18):5158–5167. doi:10.1016/j.watres.2010.05.011

    CAS  Google Scholar 

  42. Haggiage E, Coyle EE, Joyce K, Oelgemöller M (2009) Green photochemistry: solarchemical synthesis of 5-amido-1,4-naphthoquinones. Green Chem 11(2):318–321. doi:10.1039/B816676E

    CAS  Google Scholar 

  43. Haque MM, Muneer M (2007) Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J Hazard Mater 145(1–2):51–57. doi:10.1016/j.jhazmat.2006.10.086

    CAS  Google Scholar 

  44. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266(3–4):175–189. doi:10.1016/s0022-1694(02)00165-8

    CAS  Google Scholar 

  45. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. doi:10.1021/cr00033a004

    CAS  Google Scholar 

  46. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices—a review. J Environ Manage 92(10):2304–2347. doi:10.1016/j.jenvman.2011.05.023

    CAS  Google Scholar 

  47. Hu LH, Flanders PM, Miller PL, Strathmann TJ (2007) Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res 41(12):2612–2626. doi:10.1016/j.watres.2007.02.026

    CAS  Google Scholar 

  48. Im JK, Son HS, Kang YM, Zoh KD (2012) Carbamazepine degradation by photolysis and titanium dioxide photocatalysis. Water Environ Res 84(7):554–561. doi:10.2175/106143012x13373550427273

    CAS  Google Scholar 

  49. Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348(1–3):93–101. doi:10.1016/j.scitotenv.2004.12.068

    CAS  Google Scholar 

  50. Kanakaraju D, Glass BD, Oelgemöller M (2013) Heterogeneous photocatalysis application in pharmaceutical wastewater remediation. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world, vol 3. Springer, Dordrecht (in print)

  51. Khan SJ, Ongerth JE (2004) Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations. Chemosphere 54(3):355–367. doi:10.1016/j.chemosphere.2003.07.001

    CAS  Google Scholar 

  52. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107(6):2319–2364. doi:10.1021/cr020441w

    CAS  Google Scholar 

  53. Klauson D, Babkina J, Stepanova K, Krichevskaya M, Preis S (2010) Aqueous photocatalytic oxidation of amoxicillin. Catal Today 151(1–2):39–45. doi:10.1016/j.cattod.2010.01.015

    CAS  Google Scholar 

  54. Kockler J, Kanakaraju D, Glass BD, Oelgemöller M (2012) Photochemical and photocatalytic degradation of diclofenac and amoxicillin using natural and simulated sunlight. J Sustain Sci Manage 7(1):23–29. ISSN 1823-8556

    Google Scholar 

  55. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges. J Environ Manage 90(8):2354–2366. doi:10.1016/j.jenvman.2009.01.023

    Google Scholar 

  56. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698. doi:10.1021/cr00018a003

    CAS  Google Scholar 

  57. Li WH, Guo CS, Su S, Xu J (2012) Photodegradation of four fluoroquinolone compounds by titanium dioxide under simulated solar light irradiation. J Chem Technol Biotechnol 87(5):643–650. doi:10.1002/jctb.2759

    CAS  Google Scholar 

  58. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogen by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367(2–3):544–558. doi:10.1016/j.scitotenv.2006.03.021

    CAS  Google Scholar 

  59. Madhavan J, Grieser F, Ashokkumar M (2010) Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J Hazard Mater 178(1–3):202–208. doi:10.1016/j.jhazmat.2010.01.064

    CAS  Google Scholar 

  60. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59. doi:10.1016/j.cattod.2009.06.018

    CAS  Google Scholar 

  61. Marotta R, Spasiano D, Di Somma I, Andreozzi R (2013) Photodegradation of naproxen and its photoproducts in aqueous solution at 254 nm: a kinetic investigation. Wat Res 47(1):373–383. doi:10.1016/j.watres.2012.10.016

    CAS  Google Scholar 

  62. Martínez C, Canle M, Fernandez MI, Santaballa JA, Faria J (2011a) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B-Environ 107(1–2):110–118. doi:10.1016/j.apcatb.2011.07.003

    Google Scholar 

  63. Martínez C, Canle M, Fernandez MI, Santaballa JA, Faria J (2011b) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl Catal B-Environ 102(3–4):563–571. doi:10.1016/j.apcatb.2010.12.039

    Google Scholar 

  64. Martins AF, Mayer F, Confortin EC, Frank CD (2009) A study of photocatalytic processes involving the degradation of the organic load and amoxicillin in hospital wastewater. Clean-Soil Air Water 37(4–5):365–371. doi:10.1002/clen.200900022

    CAS  Google Scholar 

  65. Mboula VM, Hequet V, Gru Y, Colin R, Andres Y (2012) Assessment of the efficiency of photocatalysis on tetracycline biodegradation. J Hazard Mater 209:355–364. doi:10.1016/j.jhazmat.2012.01.032

    Google Scholar 

  66. Méndez-Arriaga F, Giménez J, Esplugas S (2008a) Photolysis and TiO2 photocatalytic treatment of naproxen: degradation, mineralization, intermediates and toxicity. J Adv Oxid Technol 11(3):435–444

    Google Scholar 

  67. Méndez-Arriaga F, Esplugas S, Giménez J (2008b) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42(3):585–594. doi:10.1016/j.watres.2007.08.002

    Google Scholar 

  68. Méndez-Arriaga F, Maldonado MI, Giménez J, Esplugas S, Malato S (2009a) Abatement of ibuprofen by solar photocatalysis process: enhancement and scale up. Catal Today 144(1–2):112–116. doi:10.1016/j.cattod.2009.01.028

    Google Scholar 

  69. Méndez-Arriaga F, Torres-Palma RA, Petrier C, Esplugas S, Giménez J, Pulgarin C (2009b) Mineralization enhancement of a recalcitrant pharmaceutical pollutant in water by advanced oxidation hybrid processes. Water Res 43(16):3984–3991. doi:10.1016/j.watres.2009.06.059

    Google Scholar 

  70. Michael I, Hapeshi E, Michael C, Fatta-Kassinos D (2010) Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: evaluation of operational and kinetic parameters. Water Res 44(18):5450–5462. doi:10.1016/j.watres.2010.06.053

    CAS  Google Scholar 

  71. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Poll 157(5):1721–1726. doi:10.1016/j.envpol.2008.11.045

    Google Scholar 

  72. Miranda MA, Morera I, Vargas F, Gómez-Lechón MJ, Castell JV (1991) In vitro assessment of the phototoxicity of anti-inflammatory 2-arylpropionic acids. Toxicol In Vitro 5(5–6):451–455. doi:10.1016/0887-2333(91)90071-K

    CAS  Google Scholar 

  73. Moctezuma E, Leyva E, Aguilar CA, Luna RA, Montalvo C (2012) Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism. J Hazard Mater 243:130–138. doi:10.1016/j.jhazmat.2012.10.010

    CAS  Google Scholar 

  74. Moldovan Z (2006) Occurrences of pharmaceuticals and personal care products as micropollutants in rivers from Romania. Chemosphere 64(11):1808–1817. doi:10.1016/j.chemosphere.2006.02.003

    CAS  Google Scholar 

  75. Molinari R, Pirillo F, Loddo V, Palmisano L (2006) Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal Today 118(1–2):205–213. doi:10.1016/j.cattod.2005.11.091

    CAS  Google Scholar 

  76. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814. doi:10.1016/j.envint.2008.10.008

    CAS  Google Scholar 

  77. Mozia S, Morawski AW (2012) The performance of a hybrid photocatalysis-MD system for the treatment of tap water contaminated with ibuprofen. Catal Today 193(1):213–220. doi:10.1016/j.cattod.2012.03.016

    CAS  Google Scholar 

  78. Nasuhoglu D, Yargeau V, Berk D (2011) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (lambda(max) = 254 nm). J Hazard Mater 186(1):67–75. doi:10.1016/j.jhazmat.2010.10.080

    CAS  Google Scholar 

  79. Nasuhoglu D, Rodayan A, Berk D, Yargeau V (2012) Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis. Chem Eng J 189–190:41–48. doi:10.1016/j.cej.2012.02.016

    Google Scholar 

  80. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.061

    CAS  Google Scholar 

  81. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid and ibuprofen. Aquat Sci 65(4):342–351. doi:10.1007/s00027-003-0671-8

    CAS  Google Scholar 

  82. Palominos RA, Mora A, Mondaca MA, Perez-Moya M, Mansilla HD (2008) Oxolinic acid photo-oxidation using immobilized TiO2. J Hazard Mater 158(2–3):460–464. doi:10.1016/j.jhazmat.2008.01.117

    CAS  Google Scholar 

  83. Palominos RA, Mondaca MA, Giraldo A, Peñuela G, Pérez-Moya M, Mansilla HD (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144(1–2):100–105. doi:10.1016/j.cattod.2008.12.031

    CAS  Google Scholar 

  84. Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res 44(10):3121–3132. doi:10.1016/j.watres.2010.03.002

    CAS  Google Scholar 

  85. Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR (2011) Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol Energy 85(11):2732–2740. doi:10.1016/j.solener.2011.08.012

    CAS  Google Scholar 

  86. Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD (2006) Degradation and inactivation of tetracycline by TiO2 photocatalysis. J Photochem Photobiol A-Chem 184(1–2):141–146. doi:10.1016/j.jphotochem.2006.04.007

    CAS  Google Scholar 

  87. Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009a) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43(4):979–988. doi:10.1016/j.watres.2008.11.040

    CAS  Google Scholar 

  88. Rizzo L, Meric S, Guida M, Kassinos D, Belgiorno V (2009b) Heterogeneous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res 43(16):4070–4078. doi:10.1016/j.watres.2009.06.046

    CAS  Google Scholar 

  89. Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049. doi:10.1016/j.chemosphere.2011.11.053

    CAS  Google Scholar 

  90. Sabri N, Hanna K, Yargeau G (2012) Chemical oxidation of ibuprofen in the presence of iron species at near neutral pH. Sci Total Environ 427–428:382–389. doi:10.1016/j.scitotenv.2012.04.034

    Google Scholar 

  91. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Fasani E, Albini A (2010) Photochemical degradation of marbofloxacin and enrofloxacin in natural waters. Environ Sci Technol 44(12):4564–4569. doi:10.1021/es100278n

    CAS  Google Scholar 

  92. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Irastorza EA, Fasani E, Albini A (2012) Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl Catal B-Environ 119:32–39. doi:10.1016/j.apcatb.2012.02.008

    Google Scholar 

  93. Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138. doi:10.1007/s11157-008-9130-2

    Google Scholar 

  94. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260. doi:10.1016/S0043-1354(98)00099-2

    CAS  Google Scholar 

  95. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Gulde BH, Preuss G, Wilme U, Seibert NZ (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863. doi:10.1021/es015757k

    CAS  Google Scholar 

  96. Thanasawasdi H, Leckie J, Mill T (2007) Photocatalytic oxidation of pharmaceutical compounds: kinetics and pathways for ibuprofen, clofibric acid, diclofenac and naproxen. J Adv Oxid Technol 10(2):342–348

    CAS  Google Scholar 

  97. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37(6):1061–1068. doi:10.1021/es025834r

    CAS  Google Scholar 

  98. Tong AYC, Braund R, Warren DS, Peake BM (2012) TiO2-assisted photodegradation of pharmaceuticals—a review. Cent Eur J Chem 10(4):989–1027. doi:10.2478/s11532-012-0049-7

    CAS  Google Scholar 

  99. Van Doorslaer X, Demeestere K, Heynderickx PM, Van Langenhove H, Dewulf J (2011) UVA and UVC induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B-Environ 101(3–4):540–547. doi:10.1016/j.apcatb.2010.10.027

    Google Scholar 

  100. Van Doorslaer X, Heynderickx PM, Demeestere K, Debevere K, Van Langenhove H, Dewulf J (2012) TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: operational variables and scavenger study. Appl Catal B-Environ 111–112:150–156. doi:10.1016/j.apcatb.2011.09.029

    Google Scholar 

  101. Vasconcelos TG, Kümmerer K, Henriques DM, Martins AF (2009) Ciprofloxacin in hospital effluent: degradation by ozone and photoprocesses. J Hazard Mater 169(1–3):1154–1158. doi:10.1016/j.jhazmat.2009.03.143

    CAS  Google Scholar 

  102. Vogna D, Marotta R, Napolitano A, d’Ischia M (2002) Advanced oxidation chemistry of paracetamol. UV/H2O2-induced hydroxylation/degradation pathways and 15N-aided inventory of nitrogenous breakdown products. J Org Chem 67(17):6143–6151. doi:10.1021/jo025604v

    Google Scholar 

  103. Xekoukoulotakis NP, Drosou C, Brebou C, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Mantzavinos D (2011) Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal Today 161(1):163–168. doi:10.1016/j.cattod.2010.09.027

    CAS  Google Scholar 

  104. Xiong P, Hu JY (2012) Degradation of acetaminophen by UV-A/LED/TiO2 process. Sep Purif Technol 91(SI):89–95. doi:10.1016/j.seppur.2011.11.012

  105. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42(13):3480–3488. doi:10.1016/j.watres.2008.04.023

    CAS  Google Scholar 

  106. Yang LM, Yu LE, Ray MB (2009) Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ Sci Technol 43(2):460–465. doi:10.1021/es8020099

    CAS  Google Scholar 

  107. Yang H, Li GY, An TC, Gao YP, Fu JM (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of sulfa drugs. Catal Today 153(3–4):200–207. doi:10.1016/j.cattod.2010.02.068

    CAS  Google Scholar 

  108. Yurdakal S, Loddo V, Augugliaro V, Berber H, Palmisano G, Palmisano L (2007) Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: mechanism and kinetics. Catal Today 129(1–2):9–15. doi:10.1016/j.cattod.2007.06.044

    CAS  Google Scholar 

  109. Zhang YJ, Geissen SU, Gal C (2008a) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161. doi:10.1016/j.chemosphere.2008.07.086

    CAS  Google Scholar 

  110. Zhang X, Wu F, Wu XW, Chen PY, Deng NS (2008b) Photodegradation of acetaminophen in TiO2 suspended solution. J Hazard Mater 157(2–3):300–307. doi:10.1016/j.jhazmat.2007.12.098

    CAS  Google Scholar 

  111. Ziylan A, Ince NH (2011) The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. J Hazard Mater 187(1–3):24–36. doi:10.1016/j.jhazmat.2011.01.057

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Oelgemöller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanakaraju, D., Glass, B.D. & Oelgemöller, M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12, 27–47 (2014). https://doi.org/10.1007/s10311-013-0428-0

Download citation

Keywords

  • Advanced oxidation processes
  • Photocatalysis
  • Titanium dioxide
  • Pharmaceuticals
  • Wastewater
  • Water treatment
  • Non-steroidal anti-inflammatory drugs
  • Analgesics
  • Antibiotics
  • Antiepileptics