Skip to main content
Log in

Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Air, marine, and terrestrial pollution are continuously critical issues to be solved in environmental sciences. Particularly with the recent disaster in the Mexico Gulf and the risk of oil spills from the continuous offshore drilling activities in the North Sea, ecotoxicological profiling requires great attention. Fjord ecosystems are particularly neglected marine ecosystems, which require better surveillance and ecotoxicological profiling. In this context, this study focuses on exploring three potential indicators for aquatic stress [polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), and nitroarenes (NAs)] by the study of their molecular and sub-molecular properties. The results show that the aromatic amine, 4-aminobiphenyl, gains a particularly reactive electronic potential, which can be summarized as a large change in LUMO+2 and HOMO−1 electron orbitals upon metabolic activation in the organism. This change in orbitals increases the overall electrostatic energy of the molecule, inducing a high affinity for DNA-adduct formation. Electronic analysis on nitroarenes shows in addition why 1,6-dinitropyrene is more stable than 1,8-dinitropyrene, and how the electrons favor nitrenium activation on the 6th and 8th carbon. Further analysis shows also that PAHs have a present correlation with hormonal similarity, and that their resemblance to estrogen can be correlated to mutagenicity, contributing to increased ecotoxicity. The electronic analysis of these three types of fossil pollutants shows how their toxicity is exerted from the electronic level and which structural features that determine the level of reactivity and toxicity. The summation of the background and electronic properties of these molecular toxins elucidates that PAHs, aromatic amines, and nitroarenes are all of equal importance as stress indicators for fjord systems, with particular emphasis on PAHs, which also exert hormonal structural similarities as a probable base of their carcinogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson LM, Ruskie S, Carter J, Pittinger S, Kovatch RM, Riggs CW (1995) Fetal mouse susceptibility to transplacental carcinogenesis: differential influence of Ah receptor phenotype on effects of 3-methylcholanthrene,12-dimethylbenz[a]anthracene, and benzo[a]pyrene. Pharmacogenetics 5:364–372

    Article  CAS  Google Scholar 

  • ATSDR. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov

  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Cogliano V (2008) Carcinogenicity of some aromatic amines, organic dyes, and related exposures. Lancet Oncol 9:322–323

    Article  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98

  • Brightwell J, Fouillet X, Cassano-Zoppi AL, Bernstein D, Crawley F, Duchosal F, Gatz R, Perczel S, Pfeifer H (1989) Tumours of the respiratory tract in rats and hamsters following chronic inhalation of engine exhaust emissions. J Appl Toxicol 9:23–31

    Article  CAS  Google Scholar 

  • Brightwell J, Fouillet X, Cassano-Zoppi AL, Gatz R, Duchosal F (1986) Neoplastic and functional changes in rodents after chronic inhalation of engine exhaust emissions. Dev Toxicol Environ Sci 13:471–485

    CAS  Google Scholar 

  • Carroll CC, Warnakulasuriyarachchi D, Nokhbeh MR, Lambert IB (2002) Salmonella typhimurium mutagenicity tester strains that overexpress oxygen-insensitive nitroreductases nfsA and nfsB. Mutat Res 501:79–98

    Article  CAS  Google Scholar 

  • Carvalho M, Sorrilha AEPM, Rodrigues JAR (1999) Reaction of aromatic azides with strong acids: formation of fused nitrogen heterocycles and arylamines. Braz Chem Soc 10:415–420

    Article  Google Scholar 

  • Cavalieri EL, Rogan EG (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25(7):677–688

    Article  CAS  Google Scholar 

  • Charles GD, Bartels MJ, Zacharewski TR, Gollapudi BB, Freshour NL, Carney EW (2000) Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay. Toxicol Sci 55:320–326

    Article  CAS  Google Scholar 

  • Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by streptomyces sp. Bull Environ Contam Toxicol 86:268–271

    Article  CAS  Google Scholar 

  • Chen J, Yu H, Liu Y, Jiang W, Jiang J, Zhang J, Hua Z (2004) Ecotoxicological evaluation of 4-aminobiphenyl using a test battery. Ecotoxicol Environ Saf 58:104–109

    Article  CAS  Google Scholar 

  • Chen Z, King RB (2005) Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. Chem Rev 105:3613–3642

    Article  CAS  Google Scholar 

  • Chiron S, Barbati S, De Méo M, Botta A (2007) In vitro synthesis of 1,N6-etheno-2′-deoxyadenosine and 1,N2-etheno-2′-deoxyguanosine by 2,4-dinitrophenol and 1,3-dinitropyrene in presence of a bacterial nitroreductase. Environ Toxicol 22:222–227

    Article  CAS  Google Scholar 

  • Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA (1998) A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19:117–124

    Article  CAS  Google Scholar 

  • Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    Article  CAS  Google Scholar 

  • Deepthike HU, Tecon R, Van Kooten G, Van der Meer JR, Harms H, Wells M, Short J (2009) Unlike PAHs from Exxon Valdez crude oil, PAHs from Gulf of Alaska coals are not readily bioavailable. Environ Sci Technol 43:5864–5870

    Article  CAS  Google Scholar 

  • Dipple A, Pigott MA, Agarwal SK, Yagi H, Sayer JM, Jerina DM (1987) Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature 327:535–536

    Article  CAS  Google Scholar 

  • Edwards NT (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment—a review. J Environ Qual 12:427–441

    Article  CAS  Google Scholar 

  • EU Directive 200006/CE. EU framework. European Union

  • Famulok M (2009) Formation of N-(deoxyguanosin-8-yl)aniline in the in vitro reaction of N-acetoxyaniline with deoxyguanosine and DNA. Angew Chem Int Ed Engl 28:468–469

    Article  Google Scholar 

  • Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  • Fu J, Suuberg EM (2012) Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environ Toxicol Chem 31:486–493

    Article  CAS  Google Scholar 

  • Gamper HB, Straub K, Calvin M, Bartholomew JC (1980) DNA alkylation and unwinding induced by benzo[a]pyrene diol epoxide: modulation by ionic strength and superhelicity. Proc Natl Acad Sci USA 77:2000–2004

    Article  CAS  Google Scholar 

  • Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E (2003) Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res 535(2):155–160

    Article  CAS  Google Scholar 

  • Glatt H, Piée A, Pauly K, Steinbrecher T, Schrode R, Oesch F, Seidel A (1991) Fjord- and bay-region diol-epoxides investigated for stability, SOS induction in Escherichia coli, and mutagenicity in Salmonella typhimurium and mammalian cells. Cancer Res 51(6):1659–1667

    CAS  Google Scholar 

  • Gohlke JM, Doke D, Tipre M, Leader M, Fitzgerald T (2011) A review of seafood safety after the deepwater horizon blowout. Environ Health Perspect 119:1062–1069

    Article  CAS  Google Scholar 

  • Goldstein LS, Weyand EH, Safe S, Steinberg M, Culp SJ, Gaylor DW, Beland FA, Rodriguez LV (1998) Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 106:1325–1330

    Article  CAS  Google Scholar 

  • Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Galichet L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2009) A review of human carcinogens—part A: pharmaceuticals. Lancet Oncol

  • Guengerich FP, Shimada T, Iwasaki M, Martin MV (1990) Activation of mutagens by human cytochrome P-450 enzymes. Prog Clin Biol Res 340B:87–96

    CAS  Google Scholar 

  • Hajos AK, Winston GW (1991) Dinitropyrene nitroreductase activity of purified NAD(P)H-quinone oxidoreductase: role in rat liver cytosol and induction by Aroclor-1254 pretreatment. Carcinogenesis 12:697–702

    Article  CAS  Google Scholar 

  • Hankinson O (1995) The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35:307–340

    Article  CAS  Google Scholar 

  • Hardin JA, Hinoshita F, Sherr DH (1992) Mechanisms by which benzo[a]pyrene, an environmental carcinogen, suppresses B cell lymphopoiesis. Toxicol Appl Pharmacol 117(2):155–164

    Article  CAS  Google Scholar 

  • Hashimoto AH, Amanuma K, Hiyoshi K, Takano H, Masumura K, Nohmi T, Aoki Y (2006) In vivo mutagenesis in the lungs of gpt-delta transgenic mice treated intratracheally with 1,6-dinitropyrene. Environ Mol Mutagen 47:277–283

    Article  CAS  Google Scholar 

  • Hirano M, Tanaka S, Asami O (2011) Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray. Environ Toxicol. doi:10.1002/tox.20761

    Google Scholar 

  • Hjetland GB (2011) Release of 1, 4 tons environmental toxins in Årdalsfjord. Sogn Avis. Norwegian, 16 sept 2011

  • Hoffmann D, Djordjevic MV, Hoffmann I (1997) The changing cigarette. Prev Med 26(427):434

    Google Scholar 

  • Holme JA, Gorria M, Arlt VM, Ovrebø S, Solhaug A, Tekpli X, Landvik NE, Huc L, Fardel O, Lagadic-Gossmann D (2007) Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells. Chem Biol Interact 167:41–55

    Article  CAS  Google Scholar 

  • Hordaland (2011) Mercury above the EU limit of Hardanger-fish. [Norwegian]. http://www.avisa-hordaland.no/arkiv/article5443349.ece. 13 Jan 2011

  • Horel A, Mortazavi B, Sobecky PA (2012) Responses of microbial community from northern Gulf of Mexico sandy sediments following exposure to deepwater horizon crude oil. Environ Toxicol Chem. doi:10.1002/etc.1770

    Google Scholar 

  • Huberman E, Sachs L, Yang SK, Gelboin V (1976) Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci USA 73:607–611

    Article  CAS  Google Scholar 

  • Ilett KF, Reeves PT, Minchin RF, Kinnear BF, Watson HF, Kadlubar FF (1991) Distribution of acetyltransferase activities in the intestines of rapid and slow acetylator rabbits. Carcinogenesis 12:1465–1469

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Jung JH, Kim M, Yim UH, Ha SY, An JG, Won JH, Han GM, Kim NS, Addison RF, Shim WJ (2011) Biomarker responses in pelagic and benthic fish over 1 year following the Hebei Spirit oil spill (Taean, Korea). Mar Pollut Bull 62:1859–1866

    Article  CAS  Google Scholar 

  • Karle IL, Yagi H, Sayer JM, Jerina DM (2004) Crystal and molecular structure of a benzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct: absolute configuration and conformation. Proc Natl Acad Sci USA 101(6):1433–1438

    Article  CAS  Google Scholar 

  • Kawakami T, Isama K, Nakashima H, Tsuchiya T, Matsuoka A (2010) Analysis of primary aromatic amines originated from azo dyes in commercial textile products in Japan. J Environ Sci Health A Tox Hazard Subst Environ Eng 45:1281–1295

    Article  CAS  Google Scholar 

  • Lei AP, Wong YS, Tam NF (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201

    CAS  Google Scholar 

  • Levin W, Wood A, Chang R, Ryan D, Thomas P, Yagi H, Thakker D, Vyas K, Boyd C, Chu SY, Conney A, Jerina D (1982) Oxidative metabolism of polycyclic aromatic hydrocarbons to ultimate carcinogens. Drug Metab Rev 13:555–580

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Ding A, Liu X, Guo J, Li P, Sun M, Ge F, Wang W (2011) Impact of long-range transport and under-cloud scavenging on precipitation chemistry in East China. Environ Sci Pollut Res Int 18:1544–1554

    Google Scholar 

  • Lilla C, Risch A, Kropp S, Chang-Claude J (2005) SULT1A1 genotype, active and passive smoking, and breast cancer risk by age 50 years in a German case-control study. Breast Cancer Res 7:R229–R237

    Article  CAS  Google Scholar 

  • Lin S, Lin CJ, Hsieh DP, Li LA (2012) ERα phenotype, estrogen level, and benzo[a]pyrene exposure modulate tumor growth and metabolism of lung adenocarcinoma cells. Lung Cancern 75:285–292

    Google Scholar 

  • Luoma SN, van Green A (1998) Metal uptake by phytoplankton during a bloom in South San Francisco Bay: implications for metal cycling in estuaries. Limnol Oceanogr 43(S):1007–1101

    Article  CAS  Google Scholar 

  • Manzetti S, Stenersen JH (2010) A critical view of the environmental condition of the Sognefjord. Mar Pollut Bull 60:2167–2174

    Article  CAS  Google Scholar 

  • Manzetti S (2011) Research and Environmental Protection of Norwegian fjords: a standstill. J Mar Sci Res Dev 1(S2-001)

    Google Scholar 

  • Manzetti S, Andersen O, Czerwinski J (2011) Biodiesel, fossil diesel and their blends: chemical and toxicological properties. In: Marchetti JM, Fang Z (eds) Biodiesel: blends, properties and applications. Nova Science Publishers, Inc. ISBN 978-1-61324-660-3

  • Marques MM (1996) Synthesis, characterization, and conformational analysis of DNA adducts from methylated anilines present in tobacco smoke. Chem Res Toxicol 9:99–108

    Article  CAS  Google Scholar 

  • McCoy EC, Rosenkranz EJ, Rosenkranz HS, Mermelstein R (1981) Nitrated fluorene derivatives are potent frameshift mutagens. Mutat Res 90:11–20

    Article  CAS  Google Scholar 

  • Mermelstein R, Kiriazides DK, Butler M, McCoy EC, Rosenkranz HS (1981) The extraordinary mutagenicity of nitropyrenes in bacteria. Mutat Res 89:187–196

    Article  CAS  Google Scholar 

  • Murray LR (2003) Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl Organomet Chem 17:669–674

    Article  CAS  Google Scholar 

  • Nakagawa R, Kitamori S, Horikawa K, Nakashima K, Tokiwa H (1983) Identification of dinitropyrenes in diesel-exhaust particles. Their probable presence as the major mutagens. Mutat Res 124:201–211

    Article  CAS  Google Scholar 

  • Naslund I, Rubio CA, Auer GU (1987) Nuclear DNA changes during pathogenesis of squamous carcinoma of the cervix in 3,4-benzopyrene-treated mice. Anal Quant Cytol Histol 9:411–418

    CAS  Google Scholar 

  • National Toxicology Program (2011) NTP 12th report on carcinogens. Rep Carcinog 12:iii–499

    Google Scholar 

  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850

    Article  CAS  Google Scholar 

  • Neff JM, Page DS, Boehm PD (2011) Exposure of sea otters and harlequin ducks in Prince William Sound, Alaska, USA, to shoreline oil residues 20 years after the Exxon Valdez oil spill. Environ Toxicol Chem 30:659–672

    Article  CAS  Google Scholar 

  • Nesje A, Whillans IM (1994) Erosion of Sognefjord, Norway. Geomorphology 9:33–45

    Article  Google Scholar 

  • Nordenskjöld M, Söderhäll S, Moldéus P, Jernström B (1978) Differences in the repair of DNA strand breaks induced by 9-hydroxy-benzo(a)pyrene and trans-7,8-dihydro-7,8-dihydroxy-benzo(a)pyrene in cultured human fibroblasts. Biochem Biophys Res Commun 85:1535–1541

    Article  Google Scholar 

  • Nordenskjöld M, Svensson SA, Jernström B, Moldéus P, Dock L, Söderhäll S (1981) Studies on the in vitro transfer of DNA binding benzo[a]pyrene metabolites from rat hepatocytes to human fibroblasts. Carcinogenesis 2:1151–1160

    Article  Google Scholar 

  • NRC (2009) Science and decisions: advancing risk assessments. committee on improving risk analysis approaches used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies. The National Academies Press, Washington, DC

  • Okay OS, Donkin P, Peters LD, Livingstone DR (2000) The role of algae (Isochrysis galbana) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus edulis. Environ Pollut 110:103–113

    Article  CAS  Google Scholar 

  • Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L (2012) Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:755–765

    CAS  Google Scholar 

  • Patellani E, Fuortes C, Guzzardella C (1951) Experimental research on the carcinogenic power of aromatic amines. Tumori 37:492–504

    CAS  Google Scholar 

  • Patil AJ, Gramajo AL, Sharma A, Chwa M, Seigel GM, Kuppermann BD, Kenney MC (2009) Effects of benzo(e)pyrene on the retinal neurosensory cells and human microvascular endothelial cells in vitro. Curr Eye Res 34:672–682

    Article  CAS  Google Scholar 

  • Perchermeier MM, Kiefer F, Wiebel FJ (1994) Toxicity of monocyclic and polycyclic nitroaromatic compounds in a panel of mammalian test cell lines. Toxicol Lett 72:53–57

    Article  CAS  Google Scholar 

  • Platt KL, Degenhardt C, Grupe S, Frank H, Seidel A (2002) Microsomal activation of dibenzo[def,mno]chrysene (anthanthrene), a hexacyclic aromatic hydrocarbon without a bay-region, to mutagenic metabolites. Chem Res Toxicol 15(3):332–342

    Article  CAS  Google Scholar 

  • Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654

    Article  Google Scholar 

  • Randic M (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem Rev 103:3449–3605

    Article  CAS  Google Scholar 

  • Sinkkonen S, Paasivirta J (2010) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate. Chemosphere 40:943–949

    Article  Google Scholar 

  • Skipper PL, Kim MY, Sun HL, Wogan GN, Tannenbaum SR (2010) Monocyclic aromatic amines as potential human carcinogens: old is new again. Carcinogenesis 31:50–58

    Article  CAS  Google Scholar 

  • Smith BA, Manjanatha MG, Pogribny IP, Mittelstaedt RA, Chen T, Fullerton NF, Beland FA, Heflich RH (1997) Analysis of mutations in the K-ras and p53 genes of lung tumors and in the hprt gene of 6-thioguanine-resistant T-lymphocytes from rats treated with 1,6-dinitropyrene. Mutat Res 379:61–68

    Article  CAS  Google Scholar 

  • Song X, Xu Y, Li G, Zhang Y, Huang T, Hu Z (2011) Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons. Mar Pollut Bull 62:2122–2128

    Article  CAS  Google Scholar 

  • Stansbury KH, Flesher JW, Gupta RC (1994) Mechanism of aralkyl-DNA adduct formation from benzo[a]pyrene in vivo. Chem Res Toxicol 7(2):254–259

    Article  CAS  Google Scholar 

  • Sugimura T, Takayama S (1983) Biological actions of nitroarenes in short-term tests on Salmonella, cultured mammalian cells and cultured human tracheal tissues: possible basis for regulatory control. Environ Health Perspect 47:171–176

    Article  CAS  Google Scholar 

  • Tahara I, Kataoka K, Kinouchi T, Ohnishi Y (1995) Stability of 1-nitropyrene and 1,6-dinitropyrene in environmental water samples and soil suspensions. Mutat Res 343:109–119

    Article  CAS  Google Scholar 

  • Thyssen J, Althoff J, Kimmerle G, Mohr U (1981) Inhalation studies with benzo[a]pyrene in Syrian golden-hamsters. J Natl Cancer Inst 66:575–577

    CAS  Google Scholar 

  • Tokiwa H, Otofuji T, Horikawa K, Kitamori S, Otsuka H, Manabe Y, Kinouchi T, Ohnishi Y (1984) 1,6-Dinitropyrene: mutagenicity in Salmonella and carcinogenicity in BALB/c mice. J Natl Cancer Inst 73:1359–1363

    CAS  Google Scholar 

  • Torres MA, Barros MP, Campos SC, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15

    Article  CAS  Google Scholar 

  • Toth B (1980) Tumorigenesis by benzo[a]pyrene administered intracolonically. Oncology 37:77–82

    Article  CAS  Google Scholar 

  • Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124

    Article  CAS  Google Scholar 

  • Vainio MJ, Puranen JS, Johnson MS (2009) ShaEP: molecular overlay based on shape and electrostatic potential. J Chem Inf Model 49:492–502

    Article  CAS  Google Scholar 

  • Vepachedu SR, Ya N, Yagi H, Sayer JM, Jerina DM (2000) Marked differences in base selectivity between DNA and the free nucleotides upon adduct formation from Bay- and Fjord-region diol epoxides. Chem Res Toxicol 13:883–890. Erratum in: Chem Res Toxicol 2001, 14;148

    Google Scholar 

  • Vidal M, Domínguez J, Luís A (2010) Spatial and temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in eggs of a coastal bird from northwestern Iberia after a major oil spill. Sci Total Environ 409:2668–2673

    Article  Google Scholar 

  • Wang C, Feng Y, Sun Q, Zhao S, Gao P, Li BL (2012) A multimedia fate model to evaluate the fate of PAHs in Songhua River, China. Environ Pollut 164:81–88

    Article  CAS  Google Scholar 

  • Wayland M, Headley JV, Peru KM, Crosley R, Brownlee BG (2008) Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada. Environ Monit Assess 136:167–182

    Article  CAS  Google Scholar 

  • Xia Y, Zhu P, Han Y, Lu C, Wang S, Gu A, Fu G, Zhao R, Song L, Wang X (2009) Urinary metabolites of polycyclic aromatic hydrocarbons in relation to idiopathic male infertility. Hum Reprod 24(5):1067–1074

    Article  CAS  Google Scholar 

  • Yan J, Cheng SP, Zhang XX, Shi L, Zhu J (2004) Effect of four metals on the degradation of purified terephthalic acid wastewater by Phanaerochaete chrysosporium and strain Fhhh. Bull Environ Contam Toxicol 72:387–393

    Article  CAS  Google Scholar 

  • Zhang HM, Nie JS, Wang F, Shi YT, Zhang L, Antonucci A, Liu HJ, Wang J, Zhao J, Zhang QL, Wang LP, Song J, Xue CE, Di Gioacchino M, Niu Q (2008) Effects of benzo[a]pyrene on autonomic nervous system of coke oven workers. Occup Health 50:308–316

    Article  CAS  Google Scholar 

  • Zhang XX, Cheng SP, Zhu CJ, Sun SL (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16:555–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. David van Der Spoel at the Biomedical Centre of the University of Uppsala, in providing software and computational power to perform quantum chemical studies in a joint collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Manzetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzetti, S. Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties. Environ Chem Lett 10, 349–361 (2012). https://doi.org/10.1007/s10311-012-0368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0368-0

Keywords

Navigation