Skip to main content

DDT isomers and metabolites in the environment: an overview

Abstract

It is known for decades that the isomeric composition of organic pollutants can be influenced substantially by environmental processes such as biotransformation or transfer between compartments. This accounts also for the pesticide 2,2,-bis(4-chlorophenyl)-1,1,1-trichloroethane, better known as p,p′-DDT, and its accompanied substitution isomer 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1,1-trichloroethane (o,p′-DDT). Although many studies followed the environmental fate of DDT, only very few publications reported on quantitative data of both o,p′- and p,p′-isomers. Therefore this condensed review describes evidence for remarkable changes and shifts in o,p′-/p,p′-ratios of DDT-related compounds. The application of isomer-specific analysis remains dominantly on emission source apportionment, for example, to differentiate DDT and dicofol emission. Only very few studies linked observed isomer shifts to aspects of environmental processes, such as (1) volatility from soil to air, (2) environmental stability in soil or (3) bioaccumulation in fishes. Additionally, several studies failed to use isomer-specific interpretation in order to obtain more detailed insight into environmental processes, for example, for observed isomer shifts during air–water fluxes. The o,p′-/p,p′-ratios of DDT and its main metabolite DDD have been detected more or less on the same level, whereas the isomers of the second main metabolite DDE were definitely depleted by the o,p′-isomer in all environmental compartments, indicating a general isomer-specific differentiation during DDT metabolism.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

DDT:

2,2-bis(chlorophenyl)-1,1,1-trichloroethane

DDD:

2,2-bis(chlorophenyl)-1,1-dichloroethane

DDMS:

2,2-bis(chlorophenyl)-1-chloroethane

DDE:

2,2-bis(chlorophenyl)-1,1-dichloroethene

DDMU:

2,2-bis(chlorophenyl)-1-chloroethene

DDNU:

2,2-bis(chlorophenyl)ethene

DBP:

Dichlorobenzophenone

DDA:

bis(chlorophenyl)acetic acid

DDCN:

bis(chlorophenyl)acetonitril

DDM:

bis(chlorophenyl)methane

DDX:

Sum of DDT and all of its metabolites

References

  • Abdullah AR, Bajet CM, Matin MA, Nhan DD, Sulaiman AH (1997) Ecotoxicology of pesticides in the tropical paddy field ecosystem. Environ Toxicol Chem 16:59–70

    Article  CAS  Google Scholar 

  • Awofolu RO, Fatoki OS (2003) Persistent organochlorine pesticide residues in freshwater systems and sediments from Eastern Cape, South Africa. Water SA 29:323–330

    CAS  Google Scholar 

  • Baczynski TP, Pleissner D, Grotenhuis T (2010) Anaerobic biodegradation of organochlorine pesticides in contaminated soil—significance of temperature and availability. Chemosphere 78:22–28

    Article  CAS  Google Scholar 

  • Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M (1991) Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environ Sci Technol 25:1489–1495

    Article  CAS  Google Scholar 

  • Chakraborty P, Li j, Xu Y, Liu X, Tanabe S, Jones K (2010) Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variation, and sources. Environ Sci Technol 44:8038–8043

    Article  CAS  Google Scholar 

  • Chen D, Liu W, Liu X, Westgate JN, Wania F (2008) Cold-trapping of persistent organic pollutants in mountain soils of Western Sichuan, China. Environ Sci Technol 42:9086–9091

    Article  CAS  Google Scholar 

  • Cullon DL, Yunker MB, Alleyne C, Dangerfield NJ, O′Neill S, Whiticar MJ, Ross PS (2009) Persistent Organic Pollutants in chinook salmon (Oncorhynchus thsawytscha), Implications for resident killer whales of British Columbia and adjacent waters. Environ Toxicol Chem 28:148–161

    Article  CAS  Google Scholar 

  • De la Cal A, Eljarrat E, Raldúa D, Durán C, Barceló D (2008) Spatial variation of DDT and its metabolites in fish and sediment from Cinca River, a tributary of Ebro River (Spain). Chemosphere 70:1182–1189

    Article  Google Scholar 

  • Di Muccio A, Camoni I, Citti P, Pontecorvo D (1988) Survey of DDT-like compounds in dicofol formulations. Ecotoxicol Environ Saf 16:129–132

    Google Scholar 

  • Falandysz J, Strandberg B, Strandberg L, Rappe C (1999) Tris(4-chlorophenyl)methane and tris(4-chlorophenyl)methanol in sediment and food webs from the baltic South Coast. Environ Sci Technol 33:517–521

    Article  CAS  Google Scholar 

  • Frische K, Schwarzbauer J, Ricking M (2010) Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. Chemosphere 81:500–508

    Article  CAS  Google Scholar 

  • Fry DM, Toone CK (1981) DDT-induced feminization of gull embryos. Science 213:922–924

    Article  CAS  Google Scholar 

  • Gillespie MJ, Lythgo CM, Plumb AD, Wilkins JPG (1994) A survey comparing the chemical composition of dicofol formulations sold in the UK before and after the introduction of the EC ‘Prohibition Directive 79/117/EEC’. Pestic Sci 42:305–314

    Google Scholar 

  • Hale SE, Tomaszewski JE, Luthy RG, Werner D (2009) Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries. Water Res 43:4336–4346

    Article  CAS  Google Scholar 

  • Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2004) Using passive air samples to assess urban—rural trends for persistent organic pollutants. 1. polychlorinated biphenyls and organochlorine pesticides. Environ Sci Tech 38:4474–4483

    Article  CAS  Google Scholar 

  • Heberer T, Dünnbier U (1999) DDT metabolite bis(chlorophenyl)acetic acid: the neglected environmental contaminant. Environ Sci Technol 33:2346–2351

    Article  CAS  Google Scholar 

  • Hinck JE, Norstrom RJ, Orazio CE, Schmitt CJ, Tillitt DE (2009) Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): continuing risk to wildlife from a former DDT manufacturing facility. Environ Pollut 157:582–591

    Article  CAS  Google Scholar 

  • Iwata H, Tanabe S, Sakal N, Tatsukawa R (1993) Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environ Sci Technol 27:1080–1098

    Article  CAS  Google Scholar 

  • Karlsson H, Muir DCG, Teixiera CF, Burniston DA, Strachan WMJ, Hecky RE, Mwita J, Bootsma HA, Grift NP, Kidd KA, Rosenberg B (2000) Persistent chlorinated pesticides in air, water, and precipitation from the lake malawi area, Southern Africa. Environ Sci Technol 34:4490–4495

    Article  CAS  Google Scholar 

  • Kronimus A, Schwarzbauer J, Ricking M (2006) Analysis of non-extractable DDT-related compounds in riverine sediments from the Teltow Canal, Berlin, by pyrolysis and thermochemolysis. Environ Sci Technol 40:5882–5890

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB, Bidleman TF, Staebler RM, Jones KC (2006) Measurement of DDT fluxes from a historically treated agricultural soil in Canada. Environ Sci Technol 40:4578–4585

    Article  CAS  Google Scholar 

  • Lee H II, Lincoff A, Boese BL, Cole FA, Ferraro SP, Lamberson JO, Ozretich RJ, Randall RC, Rukavina KR, Schutls DW, Scru KA, Specht DT, Swartz RC, Young DR (1994) Ecological risk assessment of the marine sediments at the United Heckathorn superfund site. ERL-N 269:1–298 +appendix

    Google Scholar 

  • Li Q, Zhang H, Lup Y, Song J, Wu L, Ma J (2008) Residues of DDTs and their spatial distribution characteristics in soils from the Yangtze River Delta, China. Environ Toxicol Chem 27:24–30

    Article  CAS  Google Scholar 

  • Lichtenstein EP, Fuhremann TW, Schulz KR (1971) Persistence and vertical distribution of DDT, lindane, and aldrin residues, 10 and 15 years after a single soil application. J Agric Food Chem 19:718–721

    Article  CAS  Google Scholar 

  • Lin T, Hu Z, Zhang G, Li X, Xu W, Tang J, Li J (2009) Levels and mass burden of DDTs in sediments from fishing harbors: the importance of DDT-containing antifouling paint to the coastal environment of China. Environ Sci Technol 43:8033–8038

    Article  CAS  Google Scholar 

  • Liu X, Zhang G, Li J, Yu L, Xu Y, Li XD, Kobara Y, Jones KC (2009) Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities. Environ Sci Technol 43:1316–1321

    Article  CAS  Google Scholar 

  • Macgregor K, Oliver IW, Harris L, Ridgway IM (2010) Persistant organic pollutants (PCB, DDT, HCH, HCB and BDE) in eels (Anguilla Anguilla) in Scotland, current levels and temporal trends. Environ Pollut 158:2402–2411

    Article  CAS  Google Scholar 

  • Martijn A, Bakker H, Schreuder RH (1993) Soil persistence of DDT, dieldrin, and lindane over a long period. Bull Environ Contam Toxicol 51:178–184

    Article  CAS  Google Scholar 

  • Meijer SN, Halsall CJ, Harner T, Peters AJ, Ockenden WA, Johnston AE, Jones KC (2001) Organochlorine pesticide residues in archived UK soils. Environ Sci Technol 35:1989–1995

    Article  CAS  Google Scholar 

  • Menchai P, van Zwieten L, Kimber S, Ahmad N, Rao PSC, Hose G (2008) Bioavailable DDT residues in sediments: laboratory assessment of ageing effects using semi-permeable membrane devices. Environ Poll 153:110–118

    Article  CAS  Google Scholar 

  • Motelay-Massei A, Harner T, Shoeib M, Diamond M, Stern G, Rosenberg B (2005) Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs and organochlorine pesticides. Environ Sci Techol 39:5763–5773

    Google Scholar 

  • Muir SCG, Jones PD, Karlsson H, Koczansky K, Stern GA, Kannan K, Ludwig JP, Reid H, Robertson CJR (2002) Toxaphene and other persistent organochlorine pesticides in three species albatrosses from the North and South Pacific Ocean. Environ Toxicol Chem 21:413–423

    Article  CAS  Google Scholar 

  • Qiu X, Zhu T (2010) Using the o, p′-DDT/p.p′-DDT ratio to identify DDT sources in China. Chemosphere 81:1033–1038

    Article  CAS  Google Scholar 

  • Qiu X, Zhu T, Yao B, Hu J, Hu S (2005) Contribution of dicofol to the current pollution in China. Environ Sci Technol 39:4385–4390

    Article  CAS  Google Scholar 

  • Rauschenberger RH, Wiebe JJ, Sepúlveda MS, Scarborough JE, Gross TS (2007) Parental exposure to pesticides and poor clutch viability in American alligators. Environ Sci Technol 41:5559–5563

    Article  CAS  Google Scholar 

  • Ricking M, Schwarzbauer J (2012) Environmental fate of DDT isomers and metabolites. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 1., Nanotechnology and health riskSpringer, Heidelberg, pp 173–208. doi:10.10007978-94-007-2442-0

    Chapter  Google Scholar 

  • Schwarzbauer J, Ricking M, Franke S, Francke W (2001) Halogenated organic contaminants of the Havel and Spree Rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe River and its tributaries. Environ Sci Technol 35:4015–4025

    Article  CAS  Google Scholar 

  • Schwarzbauer J, Ricking M, Littke R (2003) DDT-related compounds bound to the non-extractable matter in sediments of the Teltow Canal, Berlin, Germany. Environ Sci Technol 37:488–495

    Article  CAS  Google Scholar 

  • Strandberg B, van Bavel B, Bergqvist P-A, Broman D, Ishaq R, Näf C, Pettersen H, Rappe C (1998) Occurrence, sedimentation, and spatial variations of organochlorine contaminants in settling particulate matter and sediments in the Northern part of the Baltic Sea. Environ Sci Technol 32:1754–1759

    Article  CAS  Google Scholar 

  • Tao S, Li BG, He XC, Liu WX, Shi LZ (2007) Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China. Chemosphere 68:10–16

    Article  CAS  Google Scholar 

  • Wang XP, Gong P, Yao TD, Jones KC (2010) Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the tibetan plateau. Environ Sci Technol 44:2988–2993

    Article  CAS  Google Scholar 

  • Wetterauer B, Ricking M, Rastall A, Schwarzbauer J, Braunbeck T, Hollert H (2011) Toxicity and endocrine effects of DDT and its metabolites DDA, DDMU, DDMS and DDMS. ESPR (in press)

  • Yang X, Wang S, Bian Y, Chen F, Yu G, Gu C, Jiang X (2008) Dicofol application resulted in high DDTs residue in cotton fields from the northern Jangshua Province, China. J Hazard Mat 150:92–98

    Article  CAS  Google Scholar 

  • Zeng EY, Tsukada D, Diehl DW (2004) Development of a solid-phase micro extraction-based method for sampling persistent chlorinated hydrocarbons in an urbanized coastal environment. Environ Sci Technol 38:5737–5743

    Article  CAS  Google Scholar 

  • Zhang G, Li J, Cheng H, Li X, Xu W, Jones KC (2007) Distribution of organochlorine pesticides in the Northern South China Sea: implications for land outflow and air-sea exchange. Environ Sci Techol 41:3884–3890

    Article  CAS  Google Scholar 

  • Zhang G, Chakraborty P, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones KC (2008) Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in urban, rural, and wetland sites along the costal length of India. Environ Sci Technol 42:8218–8223

    Article  CAS  Google Scholar 

  • Zitko V (2003) Chlorinated pesticides: aldrin, DDT, endrin, dieldrin, mirex. The handbook of environmental chemistry 3, Part O persistent organic pollutants, pp 48–90

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ricking.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ricking, M., Schwarzbauer, J. DDT isomers and metabolites in the environment: an overview. Environ Chem Lett 10, 317–323 (2012). https://doi.org/10.1007/s10311-012-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0358-2

Keywords

  • DDT metabolites
  • Substitution isomers
  • Environmental fate
  • Soil
  • Air
  • Sediment
  • Water and biota