Skip to main content
Log in

Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

This article reports the complete mineralization of atrazine. Atrazine has been the most widely used s-triazine herbicide. Atrazine occurs in natural waters and presents a potential danger for public health because atrazine is considered as an endocrine disruptor. The use of chemical, photochemical and photocatalytic advanced oxidation processes (AOPs) to decontaminate waters containing atrazine only allowed its conversion into the cyanuric acid as ultimate end products, since it cannot be completely degraded by hydroxyl radicals (OH) produced by these techniques. The same behavior was previously reported for anodic oxidation and electro-Fenton with Pt anode, although better performances were found using boron-doped diamond (BDD) anode but without explaining the role of generated OH. Here, the oxidative action of these radicals in such electrochemical AOPs has been clarified by studying the mineralization process and decay kinetics of atrazine and cyanuric acid in separated solutions by anodic oxidation with BDD and electro-Fenton with Pt or BDD anode using an undivided cell with a carbon-felt cathode under galvanostatic conditions. Results showed that electro-Fenton with BDD anode was the more powerful treatment to degrade both compounds. Almost total mineralization, 97% total organic carbon (COT) removal, of atrazine was only feasible by this method with a faster removal of its oxidation intermediates by OH formed at the BDD surface than that formed in the bulk from Fenton reaction, although the latter process caused a more rapid decay of the herbicide. Cyanuric acid was much slowly mineralized mainly with OH produced at the BDD surface, and it was not degraded by electro-Fenton with Pt anode. These results highlight that electrochemical advanced oxidation processes (EAOPs) using a BDD anode are more powerful than the classical electro-Fenton process with Pt or PbO2 anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet A. Oturan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oturan, N., Brillas, E. & Oturan, M.A. Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10, 165–170 (2012). https://doi.org/10.1007/s10311-011-0337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0337-z

Keywords

Navigation