Skip to main content
Log in

Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal–Knorr pyrrole synthesis

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Heterogeneous catalysts are used for control of environmental pollution. Heterogeneous catalysts are easily separated from the reaction mixture, thus allowing their recovery and re-use. There is a need for catalysts that are efficient under mild conditions. Here, we show that silica-supported antimony(III) chloride (SbCl3/SiO2) acts as a highly efficient heterogeneous Lewis acid catalyst for the Paal–Knorr pyrrole synthesis at room temperature. We found that condensation of hexane-2,5-dione with aromatic and aliphatic primary amines in hexane using SbCl3/SiO2 with 7.6 wt% SbCl3 was the best reaction condition. The silica support facilitated the workup of the reaction mixture and provided a reusable catalyst at least for 7 runs without significant loss in activity. Indeed, the yield was 98% for the first run and 84% for the 7th run. We conclude that low catalyst loading, operational simplicity, practicability and applicability to various substrates make this reaction an interesting alternative to previously applied procedures. From the environmental standpoint, this eco-friendly catalyst is stable, highly active, easy to prepare and handle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  • Abid M, Spaeth A, Török B (2006) Solvent-free solid acid-catalyzed electrophilic annelations: a new green approach for the synthesis of substituted five-membered N-heterocycles. Adv Synth Catal 348:2191–2196

    Article  CAS  Google Scholar 

  • Agarwal S, Cämmerer S, Filali S, Fröhner W, Knöll J, Krahl MP, Reddy KR, Knölker H-J (2005) Novel routes to pyrroles, indoles and carbazoles–applications in natural product synthesis. Curr Org Chem 9:1601–1614

    Article  CAS  Google Scholar 

  • Ballini R, Barboni L, Bosica G, Petrini M (2000) 2,5-Dialkylfurans and nitroalkanes as source of 2,3,5-trialkylpyrroles. Synlett 391–393

  • Balme G (2004) Pyrrole syntheses by multicomponent coupling reactions. Angew Chem Int Ed 43:6238–6241

    Article  CAS  Google Scholar 

  • Banik BK, Samajdar S, Banik I (2004) Simple synthesis of substituted pyrroles. J Org Chem 69:213–216

    Article  CAS  Google Scholar 

  • Banik BK, Banik I, Renteria M, Dasgupta SK (2005) A straightforward highly efficient Paal-Knorr synthesis of pyrroles. Tetrahedron Lett 46:2643–2645

    Article  CAS  Google Scholar 

  • Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62:7213–7256

    Article  CAS  Google Scholar 

  • Biava M, Porretta GC, Poce G, Supino S, Sleiter G (2007) New pyrroles with potential antimycobacterial, antifungal and selective COX-2 inhibiting activities. Synthetic methodologies. Curr Org Chem 11:1092–1112

    Article  CAS  Google Scholar 

  • Braun RU, Zeitler K, Müller TJJ (2001) A novel one-pot pyrrole synthesis via a coupling-isomerization-Stetter-Paal-Knorr sequence. Org Lett 3:3297–3300

    Article  CAS  Google Scholar 

  • Cepanec I, Litvić M, Filipan-Litvić M, Grüngold I (2007) Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron 63:11822–11827

    Article  CAS  Google Scholar 

  • Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W (2006) An approach to the Paal-Knorr pyrroles synthesis catalyzed by Sc(OTf)3 under solvent-free conditions. Tetrahedron Lett 47:5383–5387

    Article  CAS  Google Scholar 

  • Chen J, Yang X, Liu M, Wu H, Ding J, Su W (2009) Approach to synthesis of β-enamino ketones and pyrroles catalyzed by gallium(III) triflate under solvent-free conditions. Synth Commun 39:4180–4198

    Article  CAS  Google Scholar 

  • Clark JH (2002) Solid acids for green chemistry. Acc Chem Res 35:791–797

    Article  CAS  Google Scholar 

  • Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  • Corma A, Garcia H (2003) Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 103:4307–4365

    Article  CAS  Google Scholar 

  • Corma A, Garcia H (2006) Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv Synth Catal 348:1391–1412

    Article  CAS  Google Scholar 

  • Curini M, Montanari F, Rosati O, Lioy E, Margarita R (2003) Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles. Tetrahedron Lett 44:3923–3925

    Article  CAS  Google Scholar 

  • Danks TN (1999) Microwave assisted synthesis of pyrroles. Tetrahedron Lett 40:3957–3960

    Article  CAS  Google Scholar 

  • Darabi HR, Aghapoor K, Mohsenzadeh F, Taala F, Asadollahnejad N, Badiei A (2009) Silica-supported antimony(III) chloride as highly effective and reusable heterogeneous catalyst for the synthesis of quinoxalines. Catal Lett 133:84–89

    Article  CAS  Google Scholar 

  • Darabi HR, Aghapoor K, Mohsenzadeh F, Jalali MR, Talebian Sh, Ebadi-Nia L, Khatamifar E, Aghaee A (2011) Heterogeneous SnCl2/SiO2 versus homogeneous SnCl2 acid catalysis in the benzo[N, N]-heterocyclic condensation. Bull Korean Chem Soc 32:213–218

    Article  CAS  Google Scholar 

  • de Leon CY, Ganem B (1997) A new approach to porphobilinogen and its analogs. Tetrahedron 53:7731–7752

    Article  Google Scholar 

  • Di Santo R, Costi R, Artico M, Massa S, Lampis G, Deidda D, Pompei R (1998) Pyrrolnitrin and related pyrroles endowed with antibacterial activities against Mycobacterium tuberculosis. Bioorg Med Chem Lett 8:2931–2936

    Article  CAS  Google Scholar 

  • Ferreira VF, De Souza MCBV, Cunha AC, Pereira LOR, Ferreira MLG (2001) Recent advances in the synthesis of pyrroles. Org Prep Proced Int 33:411–454

    Article  CAS  Google Scholar 

  • Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed 42:3582–3603

    Article  Google Scholar 

  • Fürstner A, Szillat H, Gabor B, Mynott R (1998) Platinum- and acid-catalyzed enyne metathesis reactions: mechanistic studies and applications to the syntheses of streptorubin B and metacycloprodigiosin. J Am Chem Soc 120:8305–8314

    Article  Google Scholar 

  • Haubmann C, Hübner H, Gmeiner P (1999) Piperidinylpyrroles: design, synthesis and binding properties of novel and selective dopamine D4 receptor ligands. Bioorg Med Chem Lett 9:3143–3146

    Article  CAS  Google Scholar 

  • Hoffmann H, Lindel T (2003) Synthesis of the pyrrole-imidazole alkaloids. Synthesis 34:1753–1783

    Google Scholar 

  • Jacobi PA, Coutts LD, Guo J, Hauck SI, Leung SH (2000) New strategies for the synthesis of biologically important tetrapyrroles. The “B, C + D + A” approach to linear tetrapyrroles. J Org Chem 65:205–213

    Article  CAS  Google Scholar 

  • Jones RA, Bean GP (1977) The chemistry of pyrroles. Academic Press, London

    Google Scholar 

  • Joshi U, Pipelier M, Naud S, Dubreuil D (2005) Ring contraction methodology for the synthesis of pyrroles. Curr Org Chem 9:261–288

    Article  CAS  Google Scholar 

  • Liu Y-H, Zhang Z-H, Li T-S (2008) Efficient conversion of epoxides into β-hydroperoxy alcohols catalyzed by antimony trichloride/SiO2. Synthesis 3314–3318

  • Maiti G, Kundu P (2006) Imino Diels–Alder reactions: an efficient one-pot synthesis of pyrano and furanoquinoline derivatives catalyzed by SbCl3. Tetrahedron Lett 47:5733–5736

    Article  CAS  Google Scholar 

  • Minetto G, Raveglia LF, Taddei M (2004) Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans. Org Lett 6:389–392

    Article  CAS  Google Scholar 

  • Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  CAS  Google Scholar 

  • Ragno R, Marshall GR, Di Santo R, Costi R, Massa S, Rompei R, Artico M (2000) Antimycobacterial pyrroles: synthesis, anti Mycobacterium tuberculosis activity and QSAR studies. Bioorg Med Chem 8:1423–1432

    Article  CAS  Google Scholar 

  • Robertson J, Hatley RJD, Watkin DJ (2000) Preparation of the tricyclic ketopyrrole core of roseophilin by radical macrocyclisation and Paal-Knorr condensation. J Chem Soc Perkin Trans 1:3389–3396

    Article  Google Scholar 

  • Roger J, Doucet H (2009) Regioselective C-2 or C-5 direct arylation of pyrroles with aryl bromides using a ligand-free palladium catalyst. Adv Synth Catal 351:1977–1990

    Article  CAS  Google Scholar 

  • Samadjar S, Becker FF, Banik BK (2001) Montmorillonite KSF-mediated facile synthesis of pyrroles. Heterocycles 55:1019–1022

    Article  Google Scholar 

  • Sartori G, Ballini R, Bigi F, Bosica G, Maggi R, Righi P (2004) Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem Rev 104:199–250

    Article  CAS  Google Scholar 

  • Schmuck C, Rupprecht D (2007) The synthesis of highly functionalized pyrroles: a challenge in regioselectivity and chemical reactivity. Synthesis 3095–3110

  • Singh MC, Peddinti RK (2007) Antimony(III) chloride-catalyzed ring opening of epoxides with anilines. Tetrahedron Lett 48:7354–7357

    Article  CAS  Google Scholar 

  • Song G, Wang B, Wang G, Kang Y, Yang T, Yang L (2005) Fe3+–montmorillonite as effective, recyclable catalyst for Paal-Knorr pyrrole synthesis under mild conditions. Synth Commun 35:1051–1057

    Article  CAS  Google Scholar 

  • Stellman JM (1998) Encyclopaedia of occupational health and safety, vol 3. International Labour Office, Geneva

    Google Scholar 

  • Tan B, Shi Z, Chua PJ, Li Y, Zhong G (2009) Unusual domino Michael/Aldol condensation reactions employing oximes as N-selective nucleophiles: synthesis of N-hydroxypyrroles. Angew Chem Int Ed 48:758–761

    Article  CAS  Google Scholar 

  • Texier-Boullet F, Klein B, Hamelin J (1986) Pyrrole & pyrazole ring closure in heterogeneous media. Synthesis 409–411

  • Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Pyrrole synthesis in ionic liquids by Paal-Knorr condensation under mild conditions. Tetrahedron Lett 45:3417–3419

    Article  CAS  Google Scholar 

  • Wilson K, Clark JH (2000) Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure Appl Chem 72:1313–1319

    Article  CAS  Google Scholar 

  • Wu Q-P, Wang Y, Chen W, Wang H, Liu H (2006) Efficient and selective cleavage of silyl ethers with antimony trichloride. Lett Org Chem 3:13–15

    Article  CAS  Google Scholar 

  • Wurtz NR, Turner JM, Baird EE, Dervan PB (2001) Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org Lett 3:1201–1203

    Article  CAS  Google Scholar 

  • Yadav JS, Reddy BVS, Eeshwaraiah B, Gupta MK (2004) Bi(OTf)3/[bmim]BF4 as novel and reusable catalytic system for the synthesis of furan, pyrrole and thiophene derivatives. Tetrahedron Lett 45:5873–5876

    Article  CAS  Google Scholar 

  • Zhang Z-H, Liu Y-H (2008) Antimony trichloride/SiO2 promoted synthesis of 9-aryl-3, 4, 5, 6, 7, 9-hexahydroxanthene-1, 8-diones. Catal Commun 9:1715–1719

    Article  CAS  Google Scholar 

  • Zhang L-F, Yang S-T (2009) Silica-supported antimony(III) chloride as an efficient heterogeneous catalyst for the synthesis of aminopropenones and 3-aminopropenoates under solvent-free conditions. Russ J Org Chem 45:18–21

    Article  Google Scholar 

  • Zhang Z-H, Li J-J, Li T-S (2008) Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions. Ultrason Sonochem 15:673–676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Reza Darabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darabi, H.R., Poorheravi, M.R., Aghapoor, K. et al. Silica-supported antimony(III) chloride as a mild and reusable catalyst for the Paal–Knorr pyrrole synthesis. Environ Chem Lett 10, 5–12 (2012). https://doi.org/10.1007/s10311-011-0321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0321-7

Keywords

Navigation