Skip to main content

Heavy metals, occurrence and toxicity for plants: a review

Abstract

Metal contamination issues are becoming increasingly common in India and elsewhere, with many documented cases of metal toxicity in mining industries, foundries, smelters, coal-burning power plants and agriculture. Heavy metals, such as cadmium, copper, lead, chromium and mercury are major environmental pollutants, particularly in areas with high anthropogenic pressure. Heavy metal accumulation in soils is of concern in agricultural production due to the adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. The influence of plants and their metabolic activities affects the geological and biological redistribution of heavy metals through pollution of the air, water and soil. This article details the range of heavy metals, their occurrence and toxicity for plants. Metal toxicity has high impact and relevance to plants and consequently it affects the ecosystem, where the plants form an integral component. Plants growing in metal-polluted sites exhibit altered metabolism, growth reduction, lower biomass production and metal accumulation. Various physiological and biochemical processes in plants are affected by metals. The contemporary investigations into toxicity and tolerance in metal-stressed plants are prompted by the growing metal pollution in the environment. A few metals, including copper, manganese, cobalt, zinc and chromium are, however, essential to plant metabolism in trace amounts. It is only when metals are present in bioavailable forms and at excessive levels, they have the potential to become toxic to plants. This review focuses mainly on zinc, cadmium, copper, mercury, chromium, lead, arsenic, cobalt, nickel, manganese and iron.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alcantara E, Romera FJ, Canete M, De La Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(III) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    CAS  Article  Google Scholar 

  2. Al-Hiyaly SA, McNeilly T, Bradshaw AD (1988) The effect of zinc concentration from electricity pylons-evolution in replicated situation. New Phytol 110:571–580

    CAS  Article  Google Scholar 

  3. Alia Prasad KVSK, Pardha Saradhi P (1995) Effect of zinc on free radical and proline in Brasica juncea and Cajanus cajan. Phytochem 39:45–47

    Article  Google Scholar 

  4. Allaway WH (1968) Agronomic control over the environmental cycling of trace elements. Adv Agron 20:235–274

    CAS  Article  Google Scholar 

  5. Ames BA, Shingenaga MK, Park EM (1991) Oxidative damage and repair: chemical, biological and medical aspects. In: Elmsford (ed) Pergamon Press, New York, pp 181–l87

  6. Angino EE, Magnuson LM, Waugh TC, Galle OK, Bredfeldt J (1970) Arsenic in detergents-possible danger and pollution hazard. Sci 168:389–392

    CAS  Article  Google Scholar 

  7. Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Cur Sci 82:1227–1338

    CAS  Google Scholar 

  8. Aust SD, Marehouse CE, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radi Biol Med 1:3–25

    CAS  Article  Google Scholar 

  9. Awashthi SK (2000) Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi

    Google Scholar 

  10. Bachman GR, Miller WB (1995) Iron chelate inducible iron/manganese toxicity in zonal geranium. J Plant Nutri 18:1917–1929

    CAS  Article  Google Scholar 

  11. Baker WG (1972) Toxicity levels of mercury lead, copper and zinc in tissue culture systems of cauliflowers lettucepotato and carrot. Can J Bot 50:973–976

    Article  Google Scholar 

  12. Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instr Meth B 231:350–356

    CAS  Article  Google Scholar 

  13. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    CAS  Article  Google Scholar 

  14. Barghiani C, Gloffre D, Bargali R (1987) Mercury content in Pinus Sp of the Mt. Etna volcanic area, in heavymetals in the environment, Vol 2. Lindberg JE, Hutchinson TC (eds). New Orleans.51

  15. Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    CAS  Article  Google Scholar 

  16. Bishnoi NR, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L) seedlings. J Plant Physiol 142:25–30

    CAS  Google Scholar 

  17. Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas. Agri Eco Environ 47:47–57

    CAS  Article  Google Scholar 

  18. Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremidation of toxic metals-using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  19. Bolter E, Wixson BG, Butherus DL, Jennett JC (1974) Distribution of heavy metals in soils near an active lead smelter. In: Fed kenheuer PJ (ed) Issue confronting Min. Ind. Ann. Meet. Sect. Aime 47th. Department. of Cond. Cont. Ext. University of Minneapolis. Minneapolis, 73

  20. Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremed 4:87–100

    CAS  Article  Google Scholar 

  21. Bradford WI (1997) Urban storm water pollutant loadings a statistical summary through. JWPCF 49:610–613

    Google Scholar 

  22. Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    CAS  Article  Google Scholar 

  23. Cakmak I, Marshner H (1993) Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: Barrow NJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads, pp 133–137

    Google Scholar 

  24. Cannon HL, Connally GG, Epstein JB, Parker JG, Thornton I, Wixson G (1978) Rocks: geological sources of most trace elements. In: report to the workshop at south scas plantation Captiva Island, FL, US. Geochem Environ 3:17–31

    CAS  Google Scholar 

  25. Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosph 65:999–1106

    CAS  Article  Google Scholar 

  26. Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    CAS  Article  Google Scholar 

  27. Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    CAS  Article  Google Scholar 

  28. Chatterjee C, Rajeev Gopal, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutri 29:127–136

    CAS  Article  Google Scholar 

  29. Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in French marigold. J Plant Nutri 19:901–916

    CAS  Article  Google Scholar 

  30. Clarimont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80:291–293

    Article  Google Scholar 

  31. Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Article  Google Scholar 

  32. Climino G, Ziino M (1983) Heavy metal pollution part VII emissions from Etna volcanic. Geophy Res Lett 10:31–38

    Article  Google Scholar 

  33. Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  34. Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Horti Sci 114:300–306

    CAS  Google Scholar 

  35. Cunningham RP (1997) DNA repair: caretakers of the genome? Curr Biol 7:576–579

    Article  Google Scholar 

  36. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    CAS  Article  Google Scholar 

  37. Davidson CI, Santhanam S, Fortmann RC, Olson MP (1985) Atmospheric transport and deposition of trace elements onto the Greenland ice sheet. Atmos Envi 19:2065–2082

    CAS  Article  Google Scholar 

  38. Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    CAS  Article  Google Scholar 

  39. de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  40. De Filippis LF, Ziegler H (1993) Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J Plant Physiol 142:167–172

    Google Scholar 

  41. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    CAS  Article  Google Scholar 

  42. Desmet GA, de Ruyter GA, Rigoet A (1975) Absorption and metabolism of Cr(VI) by isolated chloroplasts. Phytochem 14:2585–2588

    CAS  Article  Google Scholar 

  43. Devries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schutze G (2002) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects. Rev Environ Contam Toxicol 191:47–89

    Google Scholar 

  44. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    CAS  Article  Google Scholar 

  45. Elamin OM, Wilcox GE (1986a) Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J Am Soc Horti Sci 111:582–587

    CAS  Google Scholar 

  46. Elamin OM, Wilcox GE (1986b) Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. J Am Soc Horti Sci 111:588–593

    CAS  Google Scholar 

  47. Eshleman A, Siegel SM, Siegel BZ (1971) Is mercury from Hawaiian volcanoes a natural source of pollution? Nature 223:471–475

    Article  Google Scholar 

  48. European Union (2002) Heavy metals in wastes, European commission on environment http://www.ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  49. Farlex Incorporated (2005) Definition: environment, the free dictionary, Farlex Inc. Publishing, USA (http://www.thefreedictionary.com/)

  50. Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  51. Fernandes JC, Henriques FS (1991) Biochemical, physiological and structural effects of excess copper in plants. Bot Rev 57:247–273

    Article  Google Scholar 

  52. Fodor A, Szabo-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 14:787–792

    Google Scholar 

  53. Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutri 21:1723–1730

    CAS  Article  Google Scholar 

  54. Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutri 18:685–706

    CAS  Article  Google Scholar 

  55. Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzymes activities, proline and chlorophyll contents in wheat shoots. Biol Planta 50:653–659

    CAS  Article  Google Scholar 

  56. Garbarino JR, Hayes H, Roth D, Antweider R, Brinton TI, Taylor H (1995) Contaminants in the Mississippi River, U.S. Geological Survey Circular 1133, Virginia (http://www.pubs.usgs.gov/circ/circ1133/)

  57. Gimeno-Garcia E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollu 92:19–25

    CAS  Article  Google Scholar 

  58. Goldbold DJ, Hutterman A (1986) The uptake and toxicity of mercury and lead to spruce (Picea abies) seedlings. Wat air Soil Pollu 31:509–515

    Article  Google Scholar 

  59. Goldstein S, Czapski C (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these, systems from the toxicity of O ·−2

    CAS  Google Scholar 

  60. Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance in three Tuscan populations of Silene paradoxa. Physiol Planta 113:507–514

    CAS  Article  Google Scholar 

  61. Gore A (1997) Respect the land, our precious olant. Time Magaz 150:8–9

    Google Scholar 

  62. Gruenhage L, Jager IIJ (1985) Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum. Angew Bot 59:11–28

    CAS  Google Scholar 

  63. Guo J, Dai X, Xu W, Ma M (2008) Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    CAS  Article  Google Scholar 

  64. Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    CAS  Article  Google Scholar 

  65. Halliwell B, Cutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    CAS  Article  Google Scholar 

  66. Han FX, Su Y, Monts DL, Waggoner AC, Plodinec JM (2006) Binding distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennesse, USA. Sci Total Env 368:753–768

    CAS  Article  Google Scholar 

  67. Hawkes JS (1997) Heavy metals. J Chem Edu 74:1369–1374

    Article  Google Scholar 

  68. Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Sci 160:1085–1093

    CAS  Article  Google Scholar 

  69. Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyoma H (2000) Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    CAS  Article  Google Scholar 

  70. Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    CAS  Article  Google Scholar 

  71. Hewilt EJ (1953) Metal inter-relationships in plant nutrition. J Exp Bot 4:59–64

    Article  Google Scholar 

  72. Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutri 34:65–73

    CAS  Google Scholar 

  73. Horst J (1988) Beschreibung der Gleichgewichtslage des ionenaustauschs an schwach saoren harzen mit hilfe eines models der oberflachenkomplexbildung, doctoral thesis, University of Karlsruhe, Kfk report 4464

  74. Huang CV, Bazzaz FA, Venderhoef LN (1974) The inhibition of soya bean metabolism by cadmium and lead. Plant Physiol 34:122–124

    Article  Google Scholar 

  75. Huffman EWD Jr, Allaway HW (1973a) Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem 21:982–986

    Article  Google Scholar 

  76. Huffman EWD Jr, Allaway WH (1973b) Growth of plants in solution culture containing low levels of chromium. Plant Physiol 52:72–75

    CAS  Article  Google Scholar 

  77. Illan YA, Crapski C, Meisel D (1976) The one-electron transfer redox potentials of free radicals. 1. The oxygen/superoxide system. Biochem Biophys Acta 430:209–224

    Article  Google Scholar 

  78. Institute of Environmental Conservation and Research INECAR (2000) Position paper against mining in Rapu-Rapu, Published by INECAR, Ateneo de Naga University, Philippines (http://www.adnu.edu.ph/Institutes/Inecar/pospaper1.asp)

  79. Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    CAS  Article  Google Scholar 

  80. Izosimova A (2005) Modelling the interaction between calcium and nickel in the soil-plant system. FAL Agric Res Special issue 288:99

    Google Scholar 

  81. Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Ind J Plant Physiol 5:228–231

    CAS  Google Scholar 

  82. Juwarkar AS, Shende GB (1986) Interaction of Cd-Pb effect on growth yield and content of Cd, Pb in barley. Ind J Environ Heal 28:235–243

    CAS  Google Scholar 

  83. Kaji T, Suzuki M, Yamamoto C, Mishima A, Sakamoto M, Kozuka H (1995) Severe damage of cultured vascular endothelial cell monolayer after simultaneous exposure to cadmium and lead. Arch Environ Contam Toxicol 28:168–172

    CAS  Article  Google Scholar 

  84. Kamal M, Ghalya AE, Mahmouda N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Intern 29:1029–1039

    CAS  Article  Google Scholar 

  85. Kasprzak KS (1995) Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest 13:411–430

    CAS  Article  Google Scholar 

  86. Khan S, Khan NN (1983) Influence of lead and cadmium on growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg plant (Solanum melongena). Plant Soil 74:387–394

    CAS  Article  Google Scholar 

  87. Kitao M, Lei TT, Koike T (1997a) Effects of manganese toxicity on photosynthesis of white birch (Betula platyphylla var.japonica) seedlings. Physiol Plant 101:249–256

    CAS  Article  Google Scholar 

  88. Kitao M, Lei TT, Koike T (1997b) Effects of manganese in solution culture on the growth of five deciduous broad-leaved tree species with different successional characters from northern Japan. Photosynth 36:31–40

    Article  Google Scholar 

  89. Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environ Sci Tech 34:22–26

    CAS  Article  Google Scholar 

  90. Kraal H, Ernst W (1976) Influence of copp.er high tension lines on plants and soil. Environ Pollu 11:131–135

    CAS  Article  Google Scholar 

  91. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102

    CAS  Article  Google Scholar 

  92. Kumar G, Singh RP, Sushila (1992) Nitrate assimilation and biomass production in Seasamum indicum (L.) seedlings in lead enriched environment. Wat Soil Pollu 215:124–215

    Google Scholar 

  93. Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollu 97:209–221

    CAS  Google Scholar 

  94. Le Bot J, Kirkby EA, Beusichem ML (1990) Manganese toxicity in tomato plants: effects on cation uptake and distribution. J Plant Nutri 13:513–525

    CAS  Article  Google Scholar 

  95. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15:2547–2557

    CAS  Google Scholar 

  96. Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium (Pelargonium × hortorum Baley). J Am Soc Horti Sci 121:77–82

    CAS  Google Scholar 

  97. Lenntech Water Treatment and Air Purification (2004) Water treatment. Lenntech, Rotterdamseweg, Netherlands (http://www.excelwater.com/thp/filters/Water-Purification.htm)

  98. Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aqua Toxicol 51:277–291

    CAS  Article  Google Scholar 

  99. L’Huillier L, d’Auzac J, Durand M, Michaud-Ferriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  100. Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agri Res 47:33–43

    CAS  Article  Google Scholar 

  101. Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986

    CAS  Article  Google Scholar 

  102. Loneragan JF (1988) Distribution and movement of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 113–124

    Google Scholar 

  103. Luna CM, Gonzalez CA (1994) Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  104. Luo Y, Han Z, Chin SM, Linn S (1994) Three chemically distinct types of oxidants formed by iron mediated Fenton reactions in the presence of DNA. Proc Natl Acad Sci USA 91:12438–12442

    CAS  Article  Google Scholar 

  105. Mahmood T, Islam KR (2006) Response of rice seedlings to copper toxicity and acidity. J Plant Nutri 29:943–957

    CAS  Article  Google Scholar 

  106. Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London, p 674

    Google Scholar 

  107. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Toronto

    Google Scholar 

  108. Mathys W (1975) Enzymes of heavy metal-resistant and non-resistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    CAS  Article  Google Scholar 

  109. Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-response to elevated metal concentrations in the environment. Plant Cell and Envi 17:989–993

    CAS  Article  Google Scholar 

  110. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    CAS  Article  Google Scholar 

  111. Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Lewis JB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mat Res B 75:257–263

    Article  CAS  Google Scholar 

  112. Mildvan AS (1970) Metal in enzymes catalysis. In: Boyer DD (ed) The enzymes, vol 11. Academic Press, London, pp 445–536

    Google Scholar 

  113. Miller JE, Hassete JJ, Koppe DE (1975) Interaction of lead and cadmium of electron energy transfer reaction in corn mitochondria. Physiol Plant 28:166–171

    Article  Google Scholar 

  114. Misra SG, Mani D (1991) Soil pollution. Ashish Publishing House, Punjabi Bagh

    Google Scholar 

  115. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camella sinensis (L.). O Kuntze. Environ Toxicol 22:368–374

    CAS  Article  Google Scholar 

  116. Monni S, Salemma M, Millar N (2000) The tolerance of Empetrum nigrum to copper and nickel. Environ Pollut 109:221–229

    CAS  Article  Google Scholar 

  117. Moreno-Caselles J, Moral R, Pera-Espinosa A, Marcia MD (2000) Cadmium accumulation and distribution in cucumber plants. J Plant Nutri 23:243–250

    CAS  Article  Google Scholar 

  118. Morzck E Jr, Funicclli NA (1982) Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities. Environ Exp Bot 22:23–32

    Article  Google Scholar 

  119. Mukherji S, Maitra P (1976) Toxic effects of lead growth and metabolism of germinating rice (Oryza sativa L.) seeds mitosis of onion (Allium cepa) root tip cells. Ind J Exp Biol 14:519–521

    CAS  Google Scholar 

  120. Nakos G (1979) Lead pollution: fate of lead in soil and its effects on Pinus haplenis. Plant Soil 50:159–161

    Google Scholar 

  121. Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Envi Pollu Technol 1:285–290

    CAS  Google Scholar 

  122. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemistry significant classification of metal ions. Environ Pollut Series B 1:3–26

    CAS  Article  Google Scholar 

  123. Nriagu JO (1988) A silent epidemic of environmental metal poisoning? Environ Pollut 50:139–161

    CAS  Article  Google Scholar 

  124. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    CAS  Article  Google Scholar 

  125. Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copperbelt province of Zambia. J Environ 1:66–75

    Google Scholar 

  126. Ouzounidou G (1994) Change in chlorophyll fluorescence as a result of copper treatment: dose response relations in Silene and Thlaspi. Photosynthetica. 29:455–462

    Google Scholar 

  127. Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere, Chap 2. Wiley, New York

    Google Scholar 

  128. Paivoke H (1983) The short term effect of zinc on growth anatomy and acid phosphate activity of pea seedlings. Ann Bot 20:307–309

    CAS  Google Scholar 

  129. Panda SK, Patra HK (2000) Does chromium (III) produce oxidative stress in excised wheat leaves ? J Plant Biol 27:105–110

    Google Scholar 

  130. Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    CAS  Article  Google Scholar 

  131. Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidise activity in seedlings of Triticum aestivum L. Plant Cell Environ 15:719–725

    CAS  Article  Google Scholar 

  132. Parr PD, Taylor FG Jr (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7:197–202

    CAS  Article  Google Scholar 

  133. Peplow D (1999) Environmental impacts of mining in Eastern Washington. Center for Water and Watershed studies fact sheet, University of Washington, Seattle

    Google Scholar 

  134. Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. B. Environ Contam Toxicol 66:727–734

    CAS  Google Scholar 

  135. Phillips DJH (1990) Arsenic in aquatic organisms: a review of emphasizing chemical speciation. Aqua Toxicol 16:151–186

    CAS  Article  Google Scholar 

  136. Porter JR, Cheridan RP (1981) Inhibition of nitrogen fixation in alffa alfa by arsenate, heavy metals, fluoride and simulated acid rain. Plant Physiol 68:143–148

    CAS  Article  Google Scholar 

  137. Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Environ Pollut 4:365–371

    CAS  Google Scholar 

  138. Prasad MNV, Hagmeyer J (1999) Heavy metal stress in plants. Springer, Berlin, pp 16–20

    Google Scholar 

  139. Prasad KVSK, Pardha saradhi P, Sharmila P (1999) Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    CAS  Article  Google Scholar 

  140. Prasad MNV, Greger M, Landberg T (2001) Acacia nilotica L. bark removes toxic elements from solution: corroboration from toxicity bioassay using Salix viminalis L. in hydroponic system. Int J Phytoremed 3:289–300

    CAS  Article  Google Scholar 

  141. Pryor WA (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? hypothesis: it is a rare combination of high electrophilicity, high thermo chemical reactivity, and a mode of production that occurs near DNA. Free Radi Biol Med 4:219–223

    CAS  Article  Google Scholar 

  142. Punz WF, Sieghardt H (1993) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–98

    CAS  Article  Google Scholar 

  143. Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutri 28:393–404

    CAS  Article  Google Scholar 

  144. Reddy AM, Kumar SG, Jyotsnakumari G, Thimmanayak S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphe 60:97–104

    CAS  Article  Google Scholar 

  145. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  146. Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2–and H2O2 in pea leaves. Plant Cell Env 27:1122–1134

    CAS  Article  Google Scholar 

  147. Ros R, Cook DavidT, Picazo CarmenMartinez-CortinaIsabel (1992) Nickel and cadmium-related changes in growth, plasma membrane lipid composition, atpase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) Shoots. J Exp Bot 43:1475–1481

    CAS  Article  Google Scholar 

  148. Roseman IE, Levine RL (1987) Purification of a protease from Ochelichia coli with specificity for oxidized glutamine synthetase. J Biol Chem 262:2101–2110

    CAS  Google Scholar 

  149. Ross SM (1994) Toxic metals in soil–plant systems. Wiley, Chichester, p 469

    Google Scholar 

  150. Rout GR, Sanghamitra S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L). Chemosphere 40:855–859

    CAS  Article  Google Scholar 

  151. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechn 13:468–474

    CAS  Article  Google Scholar 

  152. Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  153. Schmfger MEV (2001) Phytochelatins: complexation of metals and metalloids, studies on the phytochelatin synthase. PhD Thesis, Munich University of Technology (TUM), Munich

  154. Scholz RW, Graham KS, Wynn MK (1990) Interaction of glutathione and a-tocopherol in the inhibition of lipid peroxidation of rat liver microsomes. In: Eddy CC, Hamilton GA, Madyastha KM (eds) Biological oxidation systems. Academic Press, San Diego, pp 841–867

    Google Scholar 

  155. SCOPE (1974) Saharan Duct. Scientific committee on problems of the environment. Wiley, New York

    Google Scholar 

  156. Seaward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants evolutionary aspects. CRC Press, Boca Raton, pp 75–94

    Google Scholar 

  157. Shah K, Dubey RS (1998) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Plant 40:121–130

    Article  Google Scholar 

  158. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 19(209):133–142

    Google Scholar 

  159. Shanker AK, Sudhagar R, Pathmanabhan G (2003a) Growth Phytochelatin SH and antioxidative response of Sunflower as affected by chromium speciation. In: 2nd international congress of plant physiology on sustainable plant productivity under changing environment, New Delhi

  160. Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003b) Uptake and phytoaccumulation of chromium by selected tree species. In: Proceedings of the international conference on water and environment held in Bhopal, India

  161. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    CAS  Article  Google Scholar 

  162. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) The symbiotic solution to arsenic contamination. Nature 404:951–952

    CAS  Google Scholar 

  163. Shaw BP, Panigrahi AK (1986) Uptake and tissue distribution of mercury in some plant species collected from a contaminated area in India: its ecological importance. Arch Environ Contam Toxicol 15:439–466

    CAS  Article  Google Scholar 

  164. Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  Google Scholar 

  165. Sinha SK, Srinivastava HS, Mishra SN (1988a) Nitrate assimilation in intact and excised maize leaves in the presence of lead. Bull Environ Cont Toxi 41:419–422

    CAS  Article  Google Scholar 

  166. Sinha SK, Srinivastava HS, Mishra SN (1988b) Effect of lead on nitrate reductase activity and nitrate assimilation in pea leaves. Bot Pollu 57:457–463

    CAS  Google Scholar 

  167. Sinha S, Guptha M, Chandra P (1997) Oxidative Stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Safe 38:286–291

    CAS  Article  Google Scholar 

  168. Smith SR (1996) Agricultural recycling of sewage sludge and the environment. CAB International, Wallingford, UK

    Google Scholar 

  169. Somasekharaiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxidase in chlorophyll degradation. Physiol Plant 85:85–89

    Article  Google Scholar 

  170. Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalysed reactions. Annu Rev Biochem 62:797–821

    CAS  Article  Google Scholar 

  171. Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008

    CAS  Google Scholar 

  172. Stiborova M, Pitrichova M, Brezinova A (1987) Effect of heavy metal ions in growth and biochemical characteristic of photosynthesis of barley and maize seedlings. Biol Plant 29:453–467

    CAS  Article  Google Scholar 

  173. Sudhakar C, Symalabai L, Veeranjaveyuler K (1992) Lead tolerance of certain legume species grown on lead or tailing. Agri Eco Environ 41:253–261

    CAS  Article  Google Scholar 

  174. Tang SR, Wilke BM, Brooks RR, Tang SR (2001) Heavy-metal uptake by metal tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal 32:895–905

    CAS  Article  Google Scholar 

  175. Thomas F, Malick C, Endreszl EC, Davies KS (1998) Distinct responses to copper stress in the halophyte, Mesembryan-themum crystallium. Physiol Plant 102:360–368

    CAS  Article  Google Scholar 

  176. United Nations Environmental Protection/Global Program of Action (2004) Why the marine environment needs protection from heavy metals, Heavy Metals 2004, UNEP/GPA Coordination Office (http://www.oceanssalts.org/unatlas/uses/uneptextsph/wastesph/2602gpa)

  177. Van Assche F, Clijsters H (1983) Multiple effects of heavy metals on photosynthesis. In: Marcelle R (ed) Effects of stress on photosynthesis. Nijhoff/Junk, The Hague 7, pp 371–382

    Google Scholar 

  178. Van Assche F, Clijsters H (1987) Enzymes analysis in plants as a tool for assessing phytotoxicity on heavy metal polluted soils. Med Fac Landouw Rijiksuniv Gent 52:1819–1824

    Google Scholar 

  179. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  180. Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity on plants as a result of heavy metal toxicity, dose response relations in Phaseolus vulgaris L. treated with cadmium. Environ Pollut 6:103–115

    Article  Google Scholar 

  181. Van den Broeck K, Vandecasteele C, Geuns JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as a bio-indicator for arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  182. Vazques MD, Ch Poschenrieder, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  183. Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as bio monitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424

    Google Scholar 

  184. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Article  Google Scholar 

  185. Vermette SJ, Bingham VG (1986) Trace elements in Frobisher Bay rain water. Arctic 39:177–179

    Google Scholar 

  186. Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    CAS  Article  Google Scholar 

  187. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  Google Scholar 

  188. Weckex JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    Google Scholar 

  189. WHO/FAO (2007) Joint FAO/WHO food standard programme codex Alimentarius commission 13th session. Report of the thirty-eight session of the codex committee on food hygiene. Houston, ALINORM 07/30/13

  190. Winterhalder EK (1963) Differential resistance of two species of Eucalyptus to toxic soil manganese levels. Aust J Sci 25:363–364

    CAS  Google Scholar 

  191. Wintz H, Fox T, Vulpe C (2002) Responses of plants to iron, zinc and copper deficiencies. Biochem Soc Trans 30:766–768

    CAS  Article  Google Scholar 

  192. Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    CAS  Article  Google Scholar 

  193. Wong JWC (1996) Heavy metal contents in vegetables and market garden soils in Hung Kong. Environ Technol 17:407–414

    CAS  Article  Google Scholar 

  194. Wu S (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutri 17:993–1003

    Google Scholar 

  195. Yamamoto F, Kozlowski TT (1987) Effect of flooding, tilting of stem, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand J For Res 2:141–156

    Article  Google Scholar 

  196. Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schratz C (2005) Hyper accumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    Article  CAS  Google Scholar 

  197. Zanthopolous N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium and lead in sheep geazing in North Greece. Bull Environ Contam Toxicol 62:691–699

    Article  Google Scholar 

  198. Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    CAS  Article  Google Scholar 

  199. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    CAS  Article  Google Scholar 

  200. Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    CAS  Article  Google Scholar 

  201. Zingg JM, Jones PA (1997) Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18:869–882

    CAS  Article  Google Scholar 

  202. Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. V. M. Sreekanth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagajyoti, P.C., Lee, K.D. & Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8, 199–216 (2010). https://doi.org/10.1007/s10311-010-0297-8

Download citation

Keywords

  • Heavy metals
  • Environment
  • Toxic effects
  • Plants
  • Anthropogenic activities