Advertisement

Environmental Chemistry Letters

, Volume 7, Issue 3, pp 191–204 | Cite as

Nanotechnology applications in pollution sensing and degradation in agriculture: a review

  • Sunandan Baruah
  • Joydeep Dutta
Review

Abstract

With the rise in the global population, the demand for increased supply of food has motivated scientists and engineers to design new methods to boost agricultural production. With limited availability of land and water resources, growth in agriculture can be achieved only by increasing productivity through good agronomy and supporting it with an effective use of modern technology. Advanced agronomical methods lay stress not only on boosting agricultural produce through use of more effective fertilizers and pesticides, but also on the hygienic storage of agricultural produce. The detrimental effects of modern agricultural methods on the ecosystem have raised serious concerns amongst environmentalists. The widespread use of persistent pesticides globally over the last six decades has contaminated groundwater and soil, resulting in diseases and hardships in non-target species such as humans and animals. The first step in the removal of disease causing microbes from food products or harmful contaminants from soil and groundwater is the effective detection of these damaging elements. Nanotechnology offers a lot of promise in the area of pollution sensing and prevention, by exploiting novel properties of nanomaterials. Nanotechnology can augment agricultural production and boost food processing industry through applications of these unique properties. Nanosensors are capable of detecting microbes, humidity and toxic pollutants at very minute levels. Organic pesticides and industrial pollutants can be degraded into harmless and often useful components, through a process called photocatalysis using metal oxide semiconductor nanostructures. Nanotechnology is gradually moving out from the experimental into the practical regime and is making its presence felt in agriculture and the food processing industry. Here we review the contributions of nanotechnology to the sensing and degradation of pollutants for improved agricultural production with sustainable environmental protection.

Keywords

Nanotechnology Agriculture Sensor Nanoparticle Pollutant Degradation Photocatalysis 

Abbreviations

SPR

Surface plasmon resonance

DNA

Deoxyribonucleic acid

Psi

Porous silicon

TFT

Thin-film transistor

VP

Vibrio parahaemolyticus

SPE

Screen-printed electrode

HRP

Horseradish peroxidase

VOC

Volatile organic compound

OP

Organic pollutant

OA

Organic anion

OC+

Organic cation

NHE

Normal hydrogen electrode

RUP

Restricted-use pesticide

Notes

Acknowledgments

The authors would like to acknowledge the partial financial support from the NANOTEC Centre of Excellence in Nanotechnology at the Asian Institute of Technology, Ministry of Science and Technology, Royal Thai Government.

References

  1. Alarie JP, Bowyer DJ, Sepaniak MJ, Hoyt AM, VO-Dinh T (1990) Fluorescence monitoring of a benzo(a)pyrene metabolite using a regenerable immuno chemical-based fiberoptic sensor. Anal Chim Acta 236:237CrossRefGoogle Scholar
  2. Anderson MA, Tinsley-Brown A, Allcock P, Perkins EA, Snow P, Hollings M, Smith RG, Reeves C, Squirrell DJ, Nicklin S, Cox TI (2003) Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores. Phys Stat Sol A 197(2):528–533. doi: 10.1002/pssa.200306558 CrossRefGoogle Scholar
  3. Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK, Drechsler U, Rothuizen H, Despont M, Vettiger P, Battiston FM, Ramseyer JP, Fornaro P, Meyer E, Guntherodt HJ (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1CrossRefGoogle Scholar
  4. Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of aldrin. Catal Today 76:189–199. doi: 10.1016/S0920-5861(02)00218-3 CrossRefGoogle Scholar
  5. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10(013001):18Google Scholar
  6. Baruah S, Rafique RF, Dutta J (2008) Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures, NANO: Brief Rep Rev 3(5):399Google Scholar
  7. Baruah S, Warad HC, Chindaduang A, Tumcharern G, Dutta J (2008b) Studies on chitosan-stabilised Zns:Mn2+ nanoparticles. J Bionanosci 2:42CrossRefGoogle Scholar
  8. Baruah S, Sinha SS, Ghosh B, Pal SK, Raychaudhuri AK, Dutta J (2009) Photo-reactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys 105:074308CrossRefGoogle Scholar
  9. Boer KW (1990) Survey of semiconductor physics. SpringerGoogle Scholar
  10. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319CrossRefGoogle Scholar
  11. Brattain WH, Bardeen J (1953) Surface properties of germanium. Bell Syst Tech J 32(1):1CrossRefGoogle Scholar
  12. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286:L344CrossRefGoogle Scholar
  13. Cao Y, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962CrossRefGoogle Scholar
  14. Carrascosa LG, Moreno M, Alvarez M, Lechuga LM (2006) Nanomechanical biosensors: a new sensing tool. Trends Anal Chem 25(3):196. doi: 10.1016/j.trac.2005.09.006 CrossRefGoogle Scholar
  15. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  16. Chaudhry Q, Schroeder P, Werck-Reichhart D, Grajek W, Marecik R (2008) Prospects and Limitations of Phytoremediation for the Removal of Persistent Pesticides in the Environment. Env Sci Pollut Res. doi: 10.1065/espr2001.09.084.1
  17. Chen HD, Weiss JC, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60:30–36Google Scholar
  18. Clark L, Lyons C (1962) Electrode system for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29. doi: 10.1111/j.1749-6632.1962.tb13623.x CrossRefGoogle Scholar
  19. Colis S, Bieber H, Bégin-Colin S, Schmerber G, Leuvrey C, Dinia A (2006) Magnetic properties of Co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis. Chem Phys Lett 422:529CrossRefGoogle Scholar
  20. De Stefano L, Moretti L, Rendina I, Rotiroti L (2005) Pesticides detection in water and humic solutions using porous silicon technology. Sens Actuators B 111–112:522–525. doi: 10.1016/j.snb.2005.03.047 CrossRefGoogle Scholar
  21. Dejneka MJ, Streltsov A, Pal S, Frutos AG, Powell CL, Yost K, Yuen PK, Muller U, Lahiri J (2003) Rare earth-doped glass microbarcodes. PNAS 100:389–393CrossRefGoogle Scholar
  22. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Oxide materials for development of integrated gas sensors: a comprehensive review. Crit Rev Solid State Mater Sci 29:111. doi: 10.1080/10408430490888977 CrossRefGoogle Scholar
  23. Estrela P, Stewart AG, Yan F, Migliorato P (2005) Field effect detection of biomolecular interactions. Electrochim Acta 50:4995–5000. doi: 10.1016/j.electacta.2005.02.075 CrossRefGoogle Scholar
  24. Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59:81–89. doi: 10.1016/j.apcatb.2005.01.005 CrossRefGoogle Scholar
  25. Faglia G, Nelli P, Sberveglieri G (1994) Frequency effect on highly sensitive NO2 sensors based on Rgto SNO2(al). Sens Actuators B Chem 19:497CrossRefGoogle Scholar
  26. Feynman RP (1960) There's plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  27. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 37:28. doi: 10.1038/238037a0 Google Scholar
  28. Gratzel M (1989) Heterogeneous photochemical electron transfer. CRC Press, Boca RatonGoogle Scholar
  29. Guo G, Liu W, Liang J, Xu H, He Z, Yang X (2006) Preparation and characterization of novel CdSe quantum dots modified with poly (d, l-lactide) nanoparticles. Mater Lett 60:2565–2568. doi: 10.1016/j.matlet.2006.01.073 CrossRefGoogle Scholar
  30. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604. doi: 10.1021/ja020393xS0002-7863(02)00393-1 CrossRefGoogle Scholar
  31. Heilig A, Barsan N, Weimar U, Berberich MS, Gardner JW, Gopel W (1997) Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens Actuators B Chem 43:45CrossRefGoogle Scholar
  32. Hermann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115CrossRefGoogle Scholar
  33. Herrmann JM, Guillard C (2000) Photocatalytic degradation of pesticides in agricultural used waters. Surface Chem Catalysis 23:417Google Scholar
  34. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles: known and unknown health risks. J Nanobiotechnol 2:12CrossRefGoogle Scholar
  35. Hofmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 6:9–96Google Scholar
  36. Hornyak GL, Tibbals HF, Dutta J, Moore JJ (2009) Introduction to nanoscience and nanotechnology. CRC Press, Taylor & Francis Group, FLGoogle Scholar
  37. Hsieh YP, Ofori JA (2007) Innovations in food technology for health. Asia Pac J Clin Nutr 16(Suppl 1):65–73Google Scholar
  38. Ikariyama Y, Nishiguchi S, Kobatake E, Aizawa M, Tsuda M, Nakazawa T (1993) Luminescent biomonitoring of benzene derivatives in the environment using recombinant Escerichia coli. Sens Actuators B 13:169CrossRefGoogle Scholar
  39. Jackson T, Mansfield K, Saafi M, Colman T, Romine P (2007) Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41(4):381–390. doi: 10.1016/j.measurement.2007.02.009 CrossRefGoogle Scholar
  40. Ji HF, Thundat T (2002) In situ detection of calcium ions with chemically modified microcantilevers. Biosens Bioelectron 17:337CrossRefGoogle Scholar
  41. Jonda S, Fleischer M, Meixner H (1996) Temperature control of semiconductor metal-oxide gas sensors by means of fuzzy logic. Sens Actuators B34:396CrossRefGoogle Scholar
  42. Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology–biology interface. J Nanopart Res 9:165–182. doi: 10.1007/s11051-006-9151-0 CrossRefGoogle Scholar
  43. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75:2229. doi: 10.1063/1.1763252 CrossRefGoogle Scholar
  44. Lhomme L, Brossilon S, Woolbert D (2007) Photocatalytic degradation of a triazole pesticide, cyproconazole, in water. J Photochem Photobiol 188:34–42CrossRefGoogle Scholar
  45. Madou M (1997) Fundamentals of microfabrication. CRC Press, New YorkGoogle Scholar
  46. Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V (2007) Photocatalytic degradation of carbofuran using semiconductor oxides. J Hazard Mater 143:240–245. doi: 10.1016/j.jhazmat.2006.09.008 CrossRefGoogle Scholar
  47. Malinsky MD, Kelly KL, Schatz GCVD, Richard P (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482CrossRefGoogle Scholar
  48. Mason WT (ed) (1992) Fluorescent and luminescent probes for biological activity. 2nd edn. Academic Press, London, pp 17–39Google Scholar
  49. Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5(15):2335–2342CrossRefGoogle Scholar
  50. Mills A, Punte L, Stephan M (1997) An overview of semiconductor optocatalysis. J Photochem Photobiol A 108:1–35CrossRefGoogle Scholar
  51. Moraru CI, Panchapakesan CP, Huang QR, Takhistov P, Sean L, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57(12):24–29Google Scholar
  52. Munteanu F, Lindgren A, Emneus J, Gorton L, Ruzgas T, Ciucu A, Csörregi E (1998) Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal Chem 70:2596CrossRefGoogle Scholar
  53. Nanto H, Minami T, Takata S (1986) Zinc oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J Appl Phys 60:482. doi: 10.1063/1.337435 CrossRefGoogle Scholar
  54. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665CrossRefGoogle Scholar
  55. Oller I, Gernjak W, Maldonado MI, P’erez-Estrada LA, S’anchez-P’erez JA, Malato S (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater B 138:507–517CrossRefGoogle Scholar
  56. Orozlan P, Duveneck GL, Ehrat M, Widmer HM (1993) Fiber-optic atrazine immunosensor. Sens Actuators B 11:301CrossRefGoogle Scholar
  57. Ortinero C, Shipin O (2008) Verbal communicationsGoogle Scholar
  58. Pareek V, Adesina AA (2003) Handbook of photochemistry and photobiology, vol 1. American Scientific Publishers, Stevenson Ranch, pp 345–412Google Scholar
  59. Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. Trends Analyt Chem 21:96–115CrossRefGoogle Scholar
  60. Pengfei QF, Vermesh O, Grecu M (2003) Toward large arrays of multiplex-functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347. doi: 10.1021/nl034010k CrossRefGoogle Scholar
  61. Peral J, Domenech X, Ollis DF (1997) Heterogeneous photocatalysis for purification, decontamination, and deodorization of air. J Chem Technol Biotechnol 70:117–140CrossRefGoogle Scholar
  62. Pirvutoiu S, Surugiu I, Ciucu A, Magearu V, Danielsson B (2001) Flow injection analysis of mercury(II) based on enzyme inhibition and thermometric detection. Analyst 126:1612. doi: 10.1039/b102723a CrossRefGoogle Scholar
  63. Prevot AB, Fabbri D, Pramauro E, Rubio AM, de la Guardia M (2001) Continuous monitoring of photocatalytic treatments by flow injection. Degradation of dicamba in aqueous TiO2 dispersions. Chemosphere 44:249–255. doi: 10.1016/S0045-6535(00)00168-5 CrossRefGoogle Scholar
  64. Pummakarnchanaa O, Tripathia N, Dutta J (2005) Air pollution monitoring and GIS modeling: a new use of nanotechnology based solid state gas sensors. Sci Technol Adv Mater 6:251. doi: 10.1016/j.stam.2005.02.003 CrossRefGoogle Scholar
  65. Rahman MA, Muneer M (2005) Photocatalysed degradation of two selected pesticide derivatives, dichlorvos and phosphamidon in aqueous suspensions of titanium dioxide. Desalination 181:161–172CrossRefGoogle Scholar
  66. Ramos D, Calleja M, Mertens J, Zaballos A, Tamaya J (2007) Measurement of the mass and rigidity of adsorbates on a microcantilever sensor. Sensors 7:1834CrossRefGoogle Scholar
  67. Ravilious K (2005) Guardian, UK December 6Google Scholar
  68. Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31(Suppl.):139–144CrossRefGoogle Scholar
  69. Shah SI, Li W, Huang C.-P, Jung O, Ni C (2002) Colloquium paper: study of Nd 3+, Pd 2+, Pt 4+, and Fe 3+ dopant effect on photoreactivity of TiO2 nanoparticles. J PNAS 99(9):6482–6486. doi: 10.1073/pnas.052518299 CrossRefGoogle Scholar
  70. Su XL, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76(16):4806–4810CrossRefGoogle Scholar
  71. Subramanian A, Oden PI, Kennel SJ, Jacobson KB, Warmack RJ, Thundat T, Doktycz MJ (2002) Microcantilever-based calorimetric biosensing. Appl Phys Lett 81:385CrossRefGoogle Scholar
  72. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Tech Adv Mater 6:335–340. doi: 10.1016/j.stam.2005.03.007 CrossRefGoogle Scholar
  73. Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165CrossRefGoogle Scholar
  74. Thompson DT (2001) A golden future for catalysis. Chem Br 37:43Google Scholar
  75. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194CrossRefGoogle Scholar
  76. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988. doi: 10.1038/214986a0 CrossRefGoogle Scholar
  77. Warad HC, Ghosh SC, Hemtanon B, Thanachayanont C, Dutta J (2005) Luminescent nanoparticles of Mn-doped ZnS passivated with sodium hexametaphosphate. Sci Tech Adv Mater 29:6–301. doi: 10.1016/j.stam.2005.03.006 Google Scholar
  78. Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ (2003) A microcantilever-based pathogen detector. Scanning 25:29Google Scholar
  79. Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GRM (2008) Nanomaterials in soils. Geoderma 146:291–302CrossRefGoogle Scholar
  80. Xiang JJ, Tang JQ, Zhu SG, Nie XM, Lu HB, Shen SR, Li XL, Tang K, Zhou M, Li GY (2003) IONP-PLL: a novel non-viral vector for efficient gene delivery. J Gene Med 5:803CrossRefGoogle Scholar
  81. Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674CrossRefGoogle Scholar
  82. Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave-assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430. doi: 10.1016/j.jhazmat.2006.11.042 CrossRefGoogle Scholar
  83. Zhao G, Xing F, Deng S (2007) A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/nano-Au membrane and screen-printed electrode. Electrochem Comm 9:1263–1268. doi: 10.1016/j.elecom.2007.01.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centre of Excellence in NanotechnologySchool of Engineering and Technology, Asian Institute of TechnologyKlong LuangThailand

Personalised recommendations