Environmental Chemistry Letters

, Volume 7, Issue 2, pp 115–119 | Cite as

Kinetics of the oxidation of endocrine disruptor nonylphenol by ferrate(VI)

  • Virender K. Sharma
  • George A. K. Anquandah
  • Nasri Nesnas
Original Paper


The kinetics of the oxidation of endocrine disruptor nonylphenol (NP) by potassium ferrate(VI) (K2FeO4) in water as a function of pH 8.0–10.9 at 25°C is presented. The observed second-order rate constants, kobs, decrease with an increase in pH 269–32 M−1 s−1. The speciation of Fe(VI) (HFeO 4 and FeO 4 2− ) and NP (NP–OH and NP–O) species was used to explain the pH dependence of the kobs values. At a dose of 10 mg L−1 (50 μM) K2FeO4, the half-life for the removal of NP by Fe(VI), under water treatment conditions, is less than 1 min.


Ferrate Phenol Oxidation Alkylphenols Rates pH 



We wish to thank three anonymous reviewers for useful comments on the paper.


  1. Brix R, Hvidt S, Carlsen L (2001) Solubility of nonylphenol and nonylphenol ethoxylates. On the possible role of micelles. Chemosphere 44(4):759–763CrossRefGoogle Scholar
  2. Hu J-Y, Cheng S, Aizawa T, Terao Y, Kunikane S (2003) Products of aqueous chlorination of 17β-estradiol and their estrogenic activity. Environ Sci Technol 37:5665–5670CrossRefGoogle Scholar
  3. Jiang JQ, Yin Q, Zhou JL, Pearce P (2005) Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewater. Chemosphere 61:544–550CrossRefGoogle Scholar
  4. Jiang JQ (2007) Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater 146:617–623CrossRefGoogle Scholar
  5. Lee Y, Yoon J, Gunten UV (2005a) Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environ Sci Technol 39:8978–8984CrossRefGoogle Scholar
  6. Lee Y, Yoon J, Gunten UV (2005b) Spectrophotometric determination of ferrate (Fe(VI) in water by ABTS. Water Res 39:1946–1953CrossRefGoogle Scholar
  7. Li C, Li XZ, Graham N, Gao NY (2008) The aqueous degradation of bisphenol and steroid estrogens by ferrate. Water Res 42(1–2):109–120 (Epub 2007)CrossRefGoogle Scholar
  8. Maguire RJ (1999) Review of the persistence of nonylphenol and nonylphenolethoxylates in environments. Water Qual Res J Can 34:37–78Google Scholar
  9. Ning B, Graham N, Zhnag Y, Nakonechny M, El-Din MG (2007) The degradation of endocrine-disrupting chemicals by ozone and AOPs––a review. Ozone Sci Eng 29:1–24CrossRefGoogle Scholar
  10. Sharma VK, Burnett CR, Millero FJ (2001) The pK* of mono-protonated ferrate(VI) ion in NaCl media. Phys Chem Chem Phys 3:2059–2063CrossRefGoogle Scholar
  11. Sharma VK (2002) Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res 6:143–156CrossRefGoogle Scholar
  12. Sharma VK, Mishra SK (2006) Ferrate(VI) oxidation of ibuprofen: a kinetic study. Environ Chem Lett 3:182–185CrossRefGoogle Scholar
  13. Sharma VK, Mishra SK, Nesnas N (2006) Oxidation of sulfonamide antimicrobials by ferrate(VI) [FeVIO42−]. Environ Sci Technol 40:7222–7227CrossRefGoogle Scholar
  14. Sharma VK (2007) A review of disinfection performance of Fe(VI) in water and wastewater. Water Sci Technol 55:225–230CrossRefGoogle Scholar
  15. Staples C, Mihaich E, Carbone J, Woodburn K, Klecka G (2004) A weigh evidence analysis of the chronic ecotoxicity of nonylphenol athoxylates, nonylphenol ether carboxylates, and nonylphenol. Hum Ecol Risk Assess 10(6):999–1017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Virender K. Sharma
    • 1
  • George A. K. Anquandah
    • 1
  • Nasri Nesnas
    • 1
  1. 1.Department of ChemistryFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations