Environmental Chemistry Letters

, Volume 7, Issue 1, pp 45–49 | Cite as

Photocatalytic degradation of indole in UV/TiO2: optimization and modelling using the response surface methodology (RSM)

  • Smail Merabet
  • Didier Robert
  • Jean-Victor Weber
  • Mohammed Bouhelassa
  • Smail Benkhanouche
Original Paper


The aim of our research is to apply experimental design methodology to the optimization of photocatalytic degradation of indole present in wastewater. Heterogeneous photocatalysis for the oxidation of organic biorecalcitrant pollutants in water is an environmental promising method. We used the response surface methodology (RSM) for the modelization and optimization of the photodegradation of indole in the presence of titanium dioxide. The effect of indole concentration, UV intensity and stirring speed on the yield of indole degradation was determined. According to the mathematic optimization of the process, the optimum point when 100% of degradation is achieved is given by the following values: UV intensity = 250 W/m2, stirring speed = 536.36 tr/min and initial indole concentration = 10.10 mg/l.


TiO2 Indole Photocatalysis Response surface methodology Central composite design 


  1. Bali U (2004) Application of Box–Wilson experimental design method for the photodegradation of textile dyestuff with UV/H2O2 process. Dyes Pigments 60:187–195CrossRefGoogle Scholar
  2. Box G, Hunter WG (1987) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, New YorkGoogle Scholar
  3. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B Stat Methods 13:1–45Google Scholar
  4. Cho IH, Zoh KD (2007) Photocatalytic degradation of azo dye (reactive Red 120) in TiO2/UV system: optimization and modelling using a response surface methodology (RSM) based on the central composite design. Dyes Pigments 75:533–543CrossRefGoogle Scholar
  5. Fernandez J, Kiwi J, Freer J, Lizama C, Manzilla HD (2004) Orange II photocatalysis on immobilized TiO2: effect of the pH and H2O2. Appl Cata B Environ 48:205–211CrossRefGoogle Scholar
  6. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals applications. BKC Inc., TokyoGoogle Scholar
  7. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRefGoogle Scholar
  8. Keller N, Robert D, Herrmann JM, Keller V (2007) Materials, applications and processes in photocatalysis, special issue. Catal Today 122(1–2)CrossRefGoogle Scholar
  9. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New YorkGoogle Scholar
  10. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A: Chem 108:1–14CrossRefGoogle Scholar
  11. Myers RH, Montgomery DC (2002) Response surface methodology, 5th edn. Wiley, New YorkGoogle Scholar
  12. Oliveira R, Almedia MF, Santos L, Madeira LM (2006) Experimental design of 2,4-dichlorophenol oxidation by Fenton’s reaction. Ind Eng Chem Res 45:1266–1276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Smail Merabet
    • 1
  • Didier Robert
    • 2
  • Jean-Victor Weber
    • 2
  • Mohammed Bouhelassa
    • 3
  • Smail Benkhanouche
    • 4
  1. 1.Laboratoire d’hydraulique appliquée et environnementUniversité de BéjaiaBejaïaAlgeria
  2. 2.Laboratoire de Chimie et de Méthodologie pour l’Environnement (EA 3471)Université Paul Verlaine-MetzSaint-AvoldFrance
  3. 3.Département de chimie industrielleUniversité de ConstantineConstantineAlgeria
  4. 4.Département du tronc commun de SETIUniversité de BéjaiaBejaïaAlgeria

Personalised recommendations