Advertisement

Journal of Forest Research

, Volume 20, Issue 1, pp 52–59 | Cite as

Does summer warming reduce black spruce productivity in interior Alaska?

  • Masahito UeyamaEmail author
  • Shinya Kudo
  • Chie Iwama
  • Hirohiko Nagano
  • Hideki Kobayashi
  • Yoshinobu Harazono
  • Kenji Yoshikawa
Original Article

Abstract

High-latitude warming has had a discernible effect on the productivity of boreal forests. Here, we report a change in the growth responses of a major biome of boreal North America, black spruce, to climatic warming, based on tree rings sampled at 11 sites in interior Alaska. Tree ring growth was negatively correlated with growing season air temperature, but positively correlated with annual precipitation. The magnitude of the negative correlation increased with increasing growing season temperature until the 1980s, suggesting that warming-induced drought restricted the productivity. However, after the mid-1990s, the negative correlation diminished, and tree ring growth responded positively to air temperature, suggesting that the productivity of the high-latitude forest, and potentially its carbon uptake, will increase under expected warming. The future trajectories of high-latitude forests in interior Alaska and associated carbon cycle feedback will depend on the duration and strength of this renewed response under future climatic warming.

Keywords

Alaska Black spruce Boreal forest Drought Renewed response Tree ring 

Notes

Acknowledgments

This study was supported in part by the Environment Research and Technology Development Fund (RF1-1201) of the Ministry of the Environment, Japan, and by JSPS KAKENHI Grant Number 23310009. We thank Dr. T. Nakai of Nagoya University and Dr. H. Iwata of Kyoto University for help with tree ring sampling, and two anonymous reviewers for beneficial comments.

References

  1. Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673PubMedCrossRefGoogle Scholar
  2. Beck PSA, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379PubMedCrossRefGoogle Scholar
  3. Cook E, Briffa K, Shiyatov S, Mazepa V (1992) Tree ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (Eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academics, Dortrecht, pp 104–123Google Scholar
  4. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob Change Biol 12:731–750CrossRefGoogle Scholar
  5. GLOBE Task Team and Others (Hastings DA, Paula KD, Gerald ME, Mark B, Hiroshi M, Hiroshi M, Hiroshi M, Peter H, John P, Nevin AB, Thomas LL, Muller J-P, Gunter S, John SM) (Eds) (1999) The global land one-kilometer base elevation (GLOBE) digital elevation model, version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305-3328, USA. Digital data base on the World Wide Web and CD-ROMs (http://www.ngdc.noaa.gov/mgg/topo/globe.html)
  6. Girardin MP, Guo XJ, Bernier PY, Faulier F, Gauthier S (2012) Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences 9:2523–2536CrossRefGoogle Scholar
  7. Goetz AJ, Bunn AG, Fiske GJ, Houghton RA (2006) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci 102:13521–13525CrossRefGoogle Scholar
  8. Grissino-Mayer HD, Holmes RL, Fritts HC (1992) International tree-ring data bank program library: User’s manual. Laboratory of Tree-Ring Research, University of Arizona, Tucson, p 104Google Scholar
  9. Hayes DJ, McGuire AD, Kicklighter DW, Gurney KR, Burnside TJ, Melillo JM (2011) Is the northern high-latitude land-based CO2 sink weakening? Glob Biogeochem Cycles 25. doi: 10.1029/2010GB003813
  10. Hinzman LD, Fukuda M, Sandberg DV, Chapin III FS, Dash D (2003) FROSTFIRE: an experimental approach to predicting the climate feedbacks from the changing boreal fire regime. J Geophys Res 108. doi: 10.1029/2001JD000415.2003
  11. Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov M, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Waker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Change 72:251–298CrossRefGoogle Scholar
  12. Iwata H, Ueyama M, Harazono Y, Tsuyuzaki S, Kondo M, Uchida M (2011) Quick recovery of carbon dioxide exchanges in a burned black spruce forest in interior Alaska. SORA 7:105–108Google Scholar
  13. Iwata H, Ueyama M, Iwama C, Harazono Y (2013) A variation in the fraction of absorbed photosynthetically active radiation and a comparison with MODIS data in burned black spruce forests of interior Alaska. Polar Sci 7:113–124CrossRefGoogle Scholar
  14. Krishnan P, Black TA, Barr AG, Grant NJ, Gaumont-Guay D, Nesic Z (2008) Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. J Goephys Res 113. doi: 10.1029/2007/JDF008965
  15. Liu H, Randerson JT (2008) Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. J Geophys Res 113:G01006. doi: 10.1029/2005JG000036 Google Scholar
  16. Nakai T, Kim Y, Busey RC, Suzuki R, Nagai S, Kobayashi H, Park H, Sugiura K, Ito A (2013) Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. Polar Sci 7:136–148CrossRefGoogle Scholar
  17. Rocha AV, Goulden ML, Dunn AL, Wofsy SC (2006) On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob Change Biol 12:1378–1389CrossRefGoogle Scholar
  18. Shulski M, Wendle G (2007) The climate of Alaska. University of Alaska Press, Alaska, p 216Google Scholar
  19. Speer JH (2010) Fundamentals of tree-ring research. The University of Arizona Press, Tucson, p 333Google Scholar
  20. Ueyama M, Harazono Y, Kim Y, Tanaka N (2009) Response of carbon cycle to in sub-arctic black spruce forests to climate change; reduction of a carbon sink related to the sensitivity of heterotrophic respiration. Agric For Meteorol 149:582–602CrossRefGoogle Scholar
  21. Ueyama M, Ichii K, Iwata H, Euskirchen ES, Zona D, Rocha AV, Harazono Y, Iwama C, Nakai T, Oechel WC (2013) Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J Geophys Res Biogeosci 118. doi: 10.1002/jgrg.20095
  22. Ueyama M, Iwata H, Harazono Y (2014) Autumn warming reduces the CO2 sink of black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Glob Change Biol 20:1161–1173CrossRefGoogle Scholar
  23. Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric For Meteorol 147:172–185CrossRefGoogle Scholar
  24. Wilmking M, Juday GP (2005) Longitudinal variation of radial growth at Alaska’s northern treeline—recent changes and possible scenarios for the 21st century. Glob Planet Change 47:282–300CrossRefGoogle Scholar
  25. Wilmking M, Myers-Smith I (2008) Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatland-forest landscape in interior Alaska. Dendrochronologia 25:167–175CrossRefGoogle Scholar
  26. Wilmking M, Juday GP, Barber VA, Zald HJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Change Biol 10:1724–1736CrossRefGoogle Scholar
  27. Wilmking M, D’Arrigo R, Jacoby GC, Juday GP (2005) Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophys Res Lett 32:L15715. doi: 10.1029/2005GL023331 CrossRefGoogle Scholar
  28. Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirche ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PS, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nature Clim Change. doi: 10.1038/NCLIMATE1836 Google Scholar
  29. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Forest Society and Springer Japan 2014

Authors and Affiliations

  • Masahito Ueyama
    • 1
    Email author
  • Shinya Kudo
    • 1
  • Chie Iwama
    • 1
  • Hirohiko Nagano
    • 2
  • Hideki Kobayashi
    • 3
  • Yoshinobu Harazono
    • 1
    • 2
  • Kenji Yoshikawa
    • 4
  1. 1.School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  2. 2.International Arctic Research CenterUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  4. 4.Water and Environmental Research CenterUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations