Skip to main content
Log in

Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying

  • Original Article
  • Published:
Journal of Forest Research

Abstract

Mature somatic embryos (SEs) of Taiwan spruce (Picea morrisonicola Hay.) were harvested from embryogenic tissues incubated on a filter paper laid on an abscisic acid (ABA)-containing medium. The effects of cold storage and partial drying on embryo germination and on reduction of embryo ABA content were determined. Percentage germination was low (<10 %) and hyperhydricity was high (>86.8 %) for mature SEs (control). Both cold storage and partial drying significantly reduced this physiological abnormality. Germination increased to 49.1 % for SEs that received cold-storage treatment, and their ABA content was reduced to a trace amount (2.4 ± 1.1 µg/g dw). Germination increased to 58.1 % for SEs partially dried for 7 days, and the ABA content was relatively high (62.8 ± 21.7 µg/g dw). Hyperhydricity-induced failure to germinate among SEs containing low levels of ABA is discussed. Histological study revealed vigorous differentiation in the root apical meristem of SE during partial drying. This advanced development also accounted for the enhanced germination performance compared with other treatments. A combination treatment (partial drying and cold storage) increased percentage germination even further (69.9 %) and more effectively reduced hyperhydricity (18.7 %) during SE germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DR (1990) Procedures for improved somatic embryo maturation in Norway spruce (Picea abies). Ph. D. Thesis. Department of Botany, North Carolina State University, Raleigh

  • Andrade GM, Merkle SA (2005) Enhancement of American chestnut somatic seedling production. Plant Cell Rep 24:326–334

    Article  CAS  PubMed  Google Scholar 

  • Becwar MR, Noland TL, Wyckoff JL (1989) Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell Dev Biol Plant 25:575–580

    Article  Google Scholar 

  • Capuana M, Petrini G, Di Marco A, Giannini R (2007) Plant regeneration of common ash (Fraxinus excelsior L.) by somatic embryogenesis. In Vitro Cell Dev Biol Plant 43:101–110

    Article  Google Scholar 

  • Carneros E, Celestino C, Klimaszewska K, Park Y-S, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell Tissue Organ Cult 98:165–178

    Article  CAS  Google Scholar 

  • Carrier DJ, Bock CA, Cunningham JE, Cyr DR, Dunstan DI (1997) (+)-ABA content and lipid deposition in interior spruce somatic embryos. In Vitro Cell Dev Biol Plant 33:236–239

    Article  CAS  Google Scholar 

  • Carrier DJ, Kendall EJ, Bock CA, Cunningham JE, Dunstan DI (1999) Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. J Exp Bot 50:1359–1364

    Article  CAS  Google Scholar 

  • Chen SY, Chien C-T, Chung J-D, Yang Y-S, Kuo S-R (2007) Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci Res 17:21–32

    Article  CAS  Google Scholar 

  • Chen SY, Kuo SR, Chien C-T (2008) Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiol 28:1431–1439

    Article  PubMed  Google Scholar 

  • De Micco V, Aronne G (2007) Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech Histochem 82:209–216

    Article  PubMed  Google Scholar 

  • Dunstan DI, Bethune TD, Abrams SR (1991) Racemic abscisic acid and abscisyl alcohol promote maturation of white spruce (Picea glauca) somatic embryos. Plant Sci 76:219–228

    Article  CAS  Google Scholar 

  • Feurtado JA, Ambrose SJ, Culter AJ, Ross ARS, Abrams SR, Kermode AR (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Planta 218:630–639

    Article  CAS  PubMed  Google Scholar 

  • Find JI (1997) Changes in endogenous ABA levels in developing somatic embryos of Norway spruce (Picea abies (L.) Karst.) in relation to maturation medium, desiccation and germination. Plant Sci 128:75–83

    Article  CAS  Google Scholar 

  • Garciarrubio A, Legaria JP, Covarrubias AA (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203:182–187

    Article  CAS  PubMed  Google Scholar 

  • Hakman I, Stabel P, Engstrom P, Eriksson T (1990) Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol Plant 80:441–445

    Article  CAS  Google Scholar 

  • Harry IS, Thorpe TA (1991) Somatic embryogenesis and plant regeneration from mature zygotic embryos of red spruce. Bot Gaz 152:446–452

    Article  CAS  Google Scholar 

  • Hristoforoglu K, Schmidt J, Bolhar-Nordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tissue Organ Cult 40:277–284

    Article  Google Scholar 

  • Jain SM, Newton RJ, Soltes EJ (1988) Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor Appl Genet 76:501–506

    Article  CAS  PubMed  Google Scholar 

  • Jones NB, van Staden J (2001) Improved somatic embryo production from embryogenic tissue of Pinus patula. In Vitro Cell Dev Biol Plant 37:543–549

    Article  Google Scholar 

  • Jung M-J, Liao G-I, Kuoh C-S (2005) Phryma leptostachya (Phrymaceae), a new family record in Taiwan. Bot Bull Acad Sin 46:239–244

    Google Scholar 

  • Keinonen-Mettala K, Jalonen P, Eurola P, von Arnold S, von Weissenberg K (1996) Somatic embryogenesis of Pinus sylvestris. Scand J For Res 11:242–250

    Article  Google Scholar 

  • Kim YW, Moon HK (2007a) Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult 88:241–245

    Article  CAS  Google Scholar 

  • Kim YW, Moon HK (2007b) Regeneration of plant by somatic embryogenesis in Pinus rigida × P. taeda. In Vitro Cell Dev Biol Plant 43:335–342

    Article  CAS  Google Scholar 

  • Klimaszewska K, Park Y-S, Overton C, Maceacheron I, Bonga JM (2001) Optimized somatic embryogenesis in Pinus strobus L. In Vitro Cell Dev Biol Plant 37:392–399

    Article  Google Scholar 

  • Kong L, Yeung EC (1992) Development of white spruce somatic embryos: II. Continual shoot meristem development during germination. In Vitro Cell Dev Biol Plant 28:125–131

    Article  Google Scholar 

  • Kong L, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    Article  CAS  Google Scholar 

  • Krajnakova J, Haggman H, Gomory D (2009) Effects of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult 96:251–262

    Article  CAS  Google Scholar 

  • Kuo PC (1989) Silviculture of important trees. Maw Chang Book Co. Ltd., Taipei (in Chinese)

    Google Scholar 

  • Lelu MA, Label P (1994) Changes in the levels of abscisic acid and its glucose ester conjugate during maturation of hybrid larch (Larix × leptoeuropaea) somatic embryos, in relation to germination and plantlet recovery. Physiol Plant 92:53–60

    Article  CAS  Google Scholar 

  • Lelu MA, Bastien C, Klimaszewska K, Charest PJ (1994) An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): Part 2. Control of germination and plantlet development. Plant Cell Tissue Organ Cult 36:117–127

    Article  CAS  Google Scholar 

  • Lelu MA, Bastien C, Drugeault A, Gouez ML, Klimaszewska K (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiol Plant 105:719–728

    Article  CAS  Google Scholar 

  • Liao YK (1999) Somatic embryogenesis and plantlet regeneration in Picea morrisonicola Hayata. Q J Chin For 32:161–170 (in Chinese with English abstract)

    Google Scholar 

  • Liao YK, Amerson HV (1995) Slash pine (Pinus elliottii Engelm.) somatic embryogenesis II. Maturation of somatic embryos and plant regeneration. New For 10:165–182

    Google Scholar 

  • Liao YK, Kung HC (2001) Using filter paper pad incorporated into embryogenic suspension culture to achieve somatic embryo production in Picea morrisonicola Hayata. Q J Chin For 34:441–451 (in Chinese with English abstract)

    Google Scholar 

  • Majada JP, Sierra MI, Sanchez-Tames R (2001) Air exchange rate affects the in vitro developed leaf cuticle of carnation. Sci Hort 87:121–130

    Article  Google Scholar 

  • Montalban IA, De Diego N, Moncalean P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24:1061–1071

    Article  Google Scholar 

  • Nakayama M, Koshioka M, Matsui H, Ohara H, Mander LN, Leitch SK, Twitchin B, Kraft-Klaunzer P, Pharis RP, Yokota T (2001) Endogenous gibberellins in immature seeds of Prunus persica L.: identification of GA118, GA119, GA120, GA121, GA122 and GA126. Phytochemistry 57:749–758

    Article  CAS  PubMed  Google Scholar 

  • Ni B-R, Bradford KJ (1993) Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds. Plant Physiol 101:607–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olmos E, Hellin E (1998) Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants. Sci Hort 75:91–101f

    Article  Google Scholar 

  • Pond SE, von Aderkas P, Bonga JM (2002) Improving tolerance of somatic embryos of Picea glauca to flash desiccation with a cold treatment (desiccation after cold acclimation). In Vitro Cell Dev Biol Plant 38:334–341

    Article  Google Scholar 

  • Pullman GS, Johnson S (2009) Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda) during seed development. Tree Physiol 29:819–827

    Article  PubMed  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Paques M (2001) Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Sci 160:473–479

    Article  CAS  PubMed  Google Scholar 

  • Roberts DR (1991) Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol Plant 83:247–254

    Article  CAS  Google Scholar 

  • Roberts DR, Flinn BS, Webb DT, Webster FB, Sutton BCS (1990a) Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol Plant 78:355–360

    Article  CAS  Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990b) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68:1086–1090

    Article  Google Scholar 

  • Salajova T, Jasik J, Kormutak A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530

    CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2001) Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant 111:196–205

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2006) Endogenous ascorbic acid modulates meristem reactivation in white spruce somatic embryos and affects thymidine and uridine metabolism. Tree Physiol 26:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Loukanina N, Ashihara H, Yeung EC, Thorpe TA (2001) Purine and pyrimidine metabolism during the partial-drying treatment of white spruce (Picea glauca) somatic embryos. Physiol Plant 111:93–101

    Article  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Article  CAS  Google Scholar 

  • von Arnold S, Hakman I (1988) Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J Plant Physiol 132:164–169

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs Ching-Te Chien and Jeng-Der Chung for kindly providing us with ABA analysis equipment and technical assistance. We also thank Dr Cherng Kang Liao for his critical comments on the organization of this paper and Ms Chiung Hsiu Hsiao and Hsiao Wen Huang for their assistance with preparation of samples for microscopy and figure files.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ken Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y.K., Juan, IP. Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res 20, 114–124 (2015). https://doi.org/10.1007/s10310-014-0445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-014-0445-2

Keywords

Navigation