Journal of Forest Research

, Volume 18, Issue 1, pp 13–20

Site-level model–data synthesis of terrestrial carbon fluxes in the CarboEastAsia eddy-covariance observation network: toward future modeling efforts

  • Kazuhito Ichii
  • Masayuki Kondo
  • Young-Hee Lee
  • Shao-Qiang Wang
  • Joon Kim
  • Masahito Ueyama
  • Hee-Jeong Lim
  • Hao Shi
  • Takashi Suzuki
  • Akihiko Ito
  • Hyojung Kwon
  • Weimin Ju
  • Mei Huang
  • Takahiro Sasai
  • Jun Asanuma
  • Shijie Han
  • Takashi Hirano
  • Ryuichi Hirata
  • Tomomichi Kato
  • Sheng-Gong Li
  • Ying-Nian Li
  • Takahisa Maeda
  • Akira Miyata
  • Yojiro Matsuura
  • Shohei Murayama
  • Yuichiro Nakai
  • Takeshi Ohta
  • Taku M. Saitoh
  • Nobuko Saigusa
  • Kentaro Takagi
  • Yan-Hong Tang
  • Hui-Min Wang
  • Gui-Rui Yu
  • Yi-Ping Zhang
  • Feng-Hua Zhao
Special Feature: Original Article Lessons learned from CarboEastAsia: Carbon and water cycles in East Asian terrestrial ecosystems

Abstract

Based on the model–data comparison at the eddy-covariance observation sites from CarboEastAsia datasets, we report the current status of the terrestrial carbon cycle modeling in monsoon Asia. In order to assess the modeling performance and discuss future requirements for both modeling and observation efforts in Asia, we ran eight terrestrial biosphere models at 24 sites from 1901 to 2010. By analyzing the modeled carbon fluxes against the CarboEastAsia datasets, the strengths and weaknesses of terrestrial biosphere modeling over Asia were evaluated. In terms of pattern and magnitude, the carbon fluxes (i.e., gross primary productivity, ecosystem respiration, and net ecosystem exchange) at the temperate and boreal forest sites were simulated best, whereas the simulation results from the tropical forest, cropland, and disturbed sites were poor. The multi-model ensemble mean values showed lower root mean square errors and higher correlations, suggesting that composition of multiple terrestrial biosphere models would be preferable for terrestrial carbon budget assessments in Asia. These results indicate that the current model-based estimation of terrestrial carbon budget has large uncertainties, and future research should further refine the models to permit re-evaluation of the terrestrial carbon budget.

Keywords

Carbon fluxes East Asia Eddy covariance measurement Model comparison Terrestrial biosphere model 

Supplementary material

10310_2012_367_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1580 kb)

References

  1. Aber JD, Ollinger SV, Driscoll CT (1997) Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecol Model 101:61–78CrossRefGoogle Scholar
  2. Adams B, White A, Lenton TM (2004) An analysis of some diverse approaches to modeling terrestrial net primary productivity. Ecol Model 177:353–391CrossRefGoogle Scholar
  3. Cox PM (2001) Description of the “TRIFFID” dynamic global vegetation model. Hadley Centre Technical Note 24, Met Office Hadley Centre Technical NotesGoogle Scholar
  4. Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G, Nemry B, Ruimy A, Schloss AL, The participants of the Potsdam NPP model intercomparison (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15CrossRefGoogle Scholar
  5. Cramer W, Bondeau A, Woodward FI, Prentice C, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Yound-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373CrossRefGoogle Scholar
  6. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized World Soil Database (version 1.2). FAO/IIASA, Rome/AustriaGoogle Scholar
  7. Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88CrossRefGoogle Scholar
  8. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance: hydrological evaluation of a dynamic global vegetation model. J Hydrol 286:249–270CrossRefGoogle Scholar
  9. Hong J, Kim J (2011) Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications. v Biol 17:1900–1916CrossRefGoogle Scholar
  10. Huete A, Didan K, Miura T, Rodriguez E (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213CrossRefGoogle Scholar
  11. Ichii K, Hashimoto H, White MA, Potter CS, Hutyra LR, Huete AR, Myneni RB, Nemani RR (2007) Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of GPP seasonality. Glob Change Biol 13:67–77CrossRefGoogle Scholar
  12. Ichii K, Wang W, Hashimoto H, Yang F, Votava P, Michaelis AR, Nemani RR (2009) Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California. Agric For Meteorol 149:1907–1918CrossRefGoogle Scholar
  13. Ichii K, Suzuki T, Kato T, Ito A, Hajima T, Ueyama M, Sasai T, Hirata R, Saigusa N, Ohtani Y, Takagi K (2010) Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations. Biogeosciences 7:2061–2080CrossRefGoogle Scholar
  14. Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747CrossRefGoogle Scholar
  15. Ito A (2010) Evaluation of defoliation impacts of tropical cyclones on the forest carbon budget using flux data and a process-based model. J Geophys Res 115:G04013. doi:10.1029/2010JG001314 CrossRefGoogle Scholar
  16. Jorgensen SE, Faith BD, Bastianoni S, Marques JC, Muller F, Nielsen SN, Patten BC, Tiezzi E, Ulanowicz RE (2007) A new ecology: systems perspective. Elsevier, OxfordGoogle Scholar
  17. Ju W, Wang S, Yu G, Zhou Y, Wang H (2010) Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences 7:845–857CrossRefGoogle Scholar
  18. Jung M, Le Maire G, Zaehle S, Luyssaert S, Vetter M, Churkina G, Ciais P, Viovy N, Reichstein M (2007) Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4:647–656CrossRefGoogle Scholar
  19. Kalnay E, Kanamitsu M, Kistler R, Collins W, Daeven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  20. Kwon H, Kim J, Hong J, Lim JH (2010) Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. Biogeosciences 7:1493–1504CrossRefGoogle Scholar
  21. Li C, Mosier A, Wassmann R, Cai Z, Zheng X, Huang Y, Tsuruta H, Boonjawat J, Lantin R (2004) Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob Biogeochem Cycles 18:GB1043. doi:10.1029/2003GB002045
  22. Liang N, Hirano T, Zheng ZM, Tang J, Fujinuma Y (2010) Soil CO2 efflux of a larch forest in northern Japan. Biogeosciences 7:3447–3457CrossRefGoogle Scholar
  23. Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Mraakhekke MC, Carvalhais N, Lange H, Maire GL, Moors E (2010) Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales. J Geophys Res 115:G02003. doi:10.1029/2009JG001016 CrossRefGoogle Scholar
  24. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  25. Mu Q, Zhao M, Running SW, Liu M, Tian H (2008) Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. J Geophys Res 113:G010118. doi:10.1029/2006JG000316 Google Scholar
  26. Myneni RB, Hoffman S, Knyazikhim Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith Y, Lotsch A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231CrossRefGoogle Scholar
  27. NOAA National Climatic Data Center (2010) State of the climate: global analysis for annual 2010. http://www.ncdc.noaa.gov/sotc/global/2010/13
  28. Oikawa T, Ito A (2001) Modeling carbon dynamics of terrestrial ecosystems in monsoon Asia. In: Matsuno T, Kida H (eds) Present and future modeling global environmental change: toward integrated modeling. TERRAPUB, Tokyo, pp 207–219Google Scholar
  29. Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563 CrossRefGoogle Scholar
  30. Patra PK, Ishizawa M, Maksyutov S, Nakazawa T, Inoue G (2005) Role of biomass burning and climate anomalies for land-atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Glob Biogeochem Cycles 19:GB3005. doi:10.1029/2004GB002258
  31. Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013PubMedCrossRefGoogle Scholar
  32. Piao SL, Ciais P, Lomas M, Beer C, Liu HY, Fang JY, Friedlingstein F, Huang Y, Muraoka H, Son Y, Woodward I (2011) Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: a multimodel analysis. Glob Planet Change 75:133–142CrossRefGoogle Scholar
  33. Richardson AD, Williams M, Hollinger DY, Moore DJP, Dail DB, Davidson EA, Scott NA, Evans RS, Hughes H, Lee JT, Rodrigues C, Savage K (2010) Estimating parameters of a forest ecosystem C model with measurement of stocks and fluxes as joint constraints. Oecologia 164:25–40PubMedCrossRefGoogle Scholar
  34. Ruddel BL, Kumar P (2009) Ecohydrologic process networks: 1. Identification. Water Resour Res 45:W03419. doi:10.1029/2008WR007229 CrossRefGoogle Scholar
  35. Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H, Han S-J, Ide R, Li SG, Ohta T, Sasai T, Wang SQ, Yu GR (2010) Impact of meteorological anomalies in the 2003 summer on gross primary productivity in East Asia. Biogeosciences 7:641–655CrossRefGoogle Scholar
  36. Saigusa N, Li SG, Kwon H, Takagi K, Zhang LM, Ide R, Ueyama M, Asanuma J, Choi YJ, Chun JH, Han SJ, Hirano T, Hirata R, Kang M, Kato T, Kim J, Li YN, Maeda T, Miyata A, Mizoguchi Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Wang HM, Yu GR, Zhang YP, Zhao FH (2012) CO2 flux measurement and the dataset in CarboEastAsia. J For Res (submitted)Google Scholar
  37. Sasai T, Ichii K, Yamaguchi Y, Nemani RR (2005) Simulating terrestrial carbon fluxes using the new biosphere model BEAMS: biosphere model integrating eco-physiological and mechanistic approaches using satellite data. J Geophys Res 110:G02014. doi:10.1029/2005JG000045 CrossRefGoogle Scholar
  38. Sasai T, Saigusa N, Nasahara NK, Ito A, Hashimoto H, Nemani R, Hirata R, Ichii K, Takagi K, Saitoh TM, Ohta T, Murakami K, Yamaguchi Y, Oikawa T (2011) Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution. Remote Sens Environ 115:1758–1771CrossRefGoogle Scholar
  39. Schwalm, CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, Black TA, Chen G, Chen JM, Ciais P, Davis KJ, Desai A, Dietze M, Dragoni D, Fischer ML, Lawrence B. Flanagan LB, Grant R, Gu L, Hollinger D, Izaurralde RC, Kucharik C, Lafleur P, Law BE, Li L, Li Z, Liu S, Lokupitiya E, Luo Y, Ma S, Margolis H, Matamala R, McCaughey H, Monson RK, Oechel WC, Peng C, Poulter B, Price DT, Riciutto DM, Riley W, Sahoo AK, Sprintsin M, Sun J, Tian H, Tonitto C, Verbeeck H, Verma SB (2010) A model–data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J Geophys Res 115:G00H05. doi:10.1029/2009JG001229 Google Scholar
  40. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes M, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic vegetation model. Glob Change Biol 9:161–185CrossRefGoogle Scholar
  41. Tamai K (2010) Effects of environmental factors and soil properties on topographic variations of soil respiration. Biogeosciences 7:1133–1142CrossRefGoogle Scholar
  42. Taylor KE (2001) Summarizing multiple aspects of model performance in single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  43. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Goldstein AH, Monson RK, Hallinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric For Meteorol 113:185–222CrossRefGoogle Scholar
  44. Tian H, Melillo JM, Kicklighter DW, Pan S, Liu J, McGuire AD, Moore B III (2003) Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Glob Planet Change 37:201–217Google Scholar
  45. Ueyama M, Ichii K, Hirata R, Takagi K, Asanuma J, Machimura T, Nakai Y, Saigusa N, Takahashi Y, Hirano T (2010) Simulating carbon and water cycles of larch forests in East Asia by the Biome-BGC model with AsiaFlux data. Biogeosciences 7:959–977CrossRefGoogle Scholar
  46. Ueyama M, Kai A, Ichii K, Hamotani K, Kosugi Y, Monji N (2011) The sensitivity of carbon sequestration to harvesting and climate conditions in a temperate cypress forest. Ecol Model 222:3216–3225CrossRefGoogle Scholar
  47. Verbeeck H, Peylin P, Bacour C, Bonal D, Steppe K, Ciais P (2011) Seasonal patterns of CO2 fluxes in Amazon forests: fusion of eddy covariance data and the ORCHIDEE model. J Geophys Res 116:G02018. doi:10.1029/2010JG001544 CrossRefGoogle Scholar
  48. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi:10.1029/2003JD004457 CrossRefGoogle Scholar
  49. Zhou B, Gu L, Ding Y, Shao L, We Z, Yang X, Li C, Li Z, Wang X, Cao Y, Zeng B, Yu M, Wang S, Sun H, Duan A, An Y, Wang X, Kong W (2011) The great 2008 Chinese ice storm: its socioeconomic-ecological impact and sustainability lessons learned. Bull Am Meteorol Soc 92:47–60CrossRefGoogle Scholar

Copyright information

© The Japanese Forest Society and Springer 2012

Authors and Affiliations

  • Kazuhito Ichii
    • 1
  • Masayuki Kondo
    • 1
  • Young-Hee Lee
    • 2
  • Shao-Qiang Wang
    • 3
  • Joon Kim
    • 4
  • Masahito Ueyama
    • 5
  • Hee-Jeong Lim
    • 2
  • Hao Shi
    • 3
  • Takashi Suzuki
    • 1
  • Akihiko Ito
    • 6
  • Hyojung Kwon
    • 4
  • Weimin Ju
    • 7
  • Mei Huang
    • 3
  • Takahiro Sasai
    • 8
  • Jun Asanuma
    • 9
  • Shijie Han
    • 10
  • Takashi Hirano
    • 11
  • Ryuichi Hirata
    • 11
  • Tomomichi Kato
    • 12
  • Sheng-Gong Li
    • 3
  • Ying-Nian Li
    • 13
  • Takahisa Maeda
    • 14
  • Akira Miyata
    • 15
  • Yojiro Matsuura
    • 16
  • Shohei Murayama
    • 14
  • Yuichiro Nakai
    • 16
  • Takeshi Ohta
    • 17
  • Taku M. Saitoh
    • 18
  • Nobuko Saigusa
    • 6
  • Kentaro Takagi
    • 19
  • Yan-Hong Tang
    • 6
  • Hui-Min Wang
    • 3
  • Gui-Rui Yu
    • 3
  • Yi-Ping Zhang
    • 20
  • Feng-Hua Zhao
    • 3
  1. 1.Faculty of Symbiotic Systems ScienceFukushima UniversityFukushimaJapan
  2. 2.Department of Astronomy and Atmospheric SciencesKyungpook National UniversityDaeguKorea
  3. 3.Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of ScienceBeijingChina
  4. 4.Department of Landscape Architecture and Rural Systems EngineeringSeoul National UniversitySeoulKorea
  5. 5.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  6. 6.National Institute for Environmental StudiesTsukubaJapan
  7. 7.Nanjing UniversityNanjingChina
  8. 8.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  9. 9.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  10. 10.Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  11. 11.Graduate School of AgricultureHokkaido UniversitySapporoJapan
  12. 12.Laboratoire des Sciences du Climat et de l’EnvironnementCEA-CNRS-UVSQGif sur YvetteFrance
  13. 13.Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
  14. 14.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  15. 15.National Institute for Agro-Environmental SciencesTsukubaJapan
  16. 16.Forestry and Forest Products Research InstituteTsukubaJapan
  17. 17.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  18. 18.River Basin Research CenterGifu UniversityGifuJapan
  19. 19.Field Science Center for Northern BiosphereHokkaido UniversityToikanbetsuJapan
  20. 20.Xishuangbanna Tropical Botanical GardenChinese Academy of ScienceYunnanChina

Personalised recommendations