Skip to main content

Nitrate dynamics of forested watersheds: spatial and temporal patterns in North America, Europe and Japan

Abstract

The relationships of nitrogen biogeochemistry are reviewed, focusing on forested watersheds in North America, Europe and Japan. Changes in both local and global nitrogen cycles that affect the structure and function of ecosystems are described. Within northeastern United States and Europe, atmospheric deposition thresholds of ~8 and ~10 kg N ha−1 year−1, respectively, result in enhanced mobilization of nitrate. High nitrate concentrations and drainage water loss rates up to 22 kg N ha−1 year−1 have also been found near Tokyo. Although atmospheric deposition may explain a substantial portion of the spatial pattern of nitrate in surface waters, other factors also play major roles in affecting the spatial patterns of nitrogen biogeochemistry. Calcium availability influences the composition of the vegetation and the biogeochemistry of nitrogen. The abundance of sugar maple is directly linked to soil organic matter characteristics and high rates of nitrogen mineralization and nitrification. Seasonal patterns of nitrate concentration and drainage water losses are closely coupled with differences in seasonal temperature and hydrological regimes. Snow-dominated forested catchments have highest nitrate losses during snowmelt. Watersheds in the main island of Japan (Honshu) with high summer temperatures and precipitation inputs have greatest losses of nitrate occur during the late summer. Understanding future changes in nitrate concentrations in surface waters will require an integrated approach that will evaluate concomitantly the influence of both biotic and biotic factors on nitrogen biogeochemistry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Aber J, Nadelhoffer K, Steudler P, Melillo J (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber J, Melillo J, Nadelhoffer K, Pastor J, Boone R (1991) Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecol Appl 1:303–315

    Article  Google Scholar 

  • Aber J, Goodale C, Ollinger S, Smith M, Magill A, Martin M, Hallett R, Stoddard J (2003) Nitrogen saturation in temperate forest ecosystems, hypotheses revisited. Bioscience 53:375–389

    Article  Google Scholar 

  • Bailey S, Horsley S, Long R (2005) Thirty years of change in forest soils of the Allegheny Plateau in Pennsylvania. Soil Sci Soc Am J 69:681–690

    Article  CAS  Google Scholar 

  • Binkley D, Ice GG, Kaye J, Williams CA (2004) Nitrogen and phosphorus concentrations in forest streams of the United States. J Am Water Resour Assoc 40:1277–1291

    Article  CAS  Google Scholar 

  • Campbell JL, Hornbeck JW, Mitchell MJ, Adams MB, Castro MS, Driscoll CT, Kahl JS, Kochenderfer JN, Likens GE, Lynch JA, Murdoch PS, Nelson SJ, Shanley JB (2004) Input-output budgets of inorganic nitrogen for 24 forest watersheds in the Northeastern United States: a review. Water Air Soil Pollut 151:373–396

    Article  CAS  Google Scholar 

  • Christopher S, Page B, Campbell J, Mitchell M (2006) Contrasting stream water NO3− and Ca2+ in two nearly adjacent catchments: the role of soil Ca and forest vegetation. Glob Change Biol 12:364–381

    Article  Google Scholar 

  • Christopher S, Shibata H, Ozawa M, Nakagawa Y, Mitchell M (2008) The effect of soil freezing on N cycling: comparison of two headwater subcatchments with different vegetation and snowpack conditions in the northern Hokkaido Island of Japan. Biogeochemistry 88:15–30

    Article  Google Scholar 

  • David M, Gentry L, Kovacic D, Smith K (1997) Nitrogen balance in and export from an agricultural watershed. J Environ Qual 26:1038–1048

    Article  CAS  Google Scholar 

  • Dise N, Wright R (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161

    Article  Google Scholar 

  • Dise N, Rothwella J, Gauci V, van der Salm C, de Vries W (2009) Predicting dissolved inorganic nitrogen leaching in European forests using two independent databases. Sci Total Environ 407:1798–1808

    PubMed  Article  CAS  Google Scholar 

  • Fenn M, Poth M, Aber J, Baron J, Bormann B, Johnson D, Lemly A, McNulty S, Ryan D, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733

    Article  Google Scholar 

  • Fenn M, Baron J, Allen E, Rueth H, Nydick K, Geiser L, Bowman W, Sickman J, Meixner T, Johnson D, Neitlich P (2003) Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404–420

    Article  Google Scholar 

  • Fitzhugh R, Likens G, Driscoll C, Mitchell M, Groffman P, Fahey T, Hardy J (2003) The role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook Experimental Forest. Environ Sci Technol 37:1575–1580

    PubMed  Article  CAS  Google Scholar 

  • Galloway J, Cowling E (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    PubMed  Google Scholar 

  • Galloway J, Aber J, Erisman J, Seitzinger S, Howarth R, Cowling E, Cosby B (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway J, Townsend A, Erisman J, Bekunda M, Cai Z, Freney J, Martinelli L, Seitzinger S, Sutton M (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    PubMed  Article  CAS  Google Scholar 

  • Goodale C, Aber J, Vitousek P (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems 6:75–86

    Article  CAS  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56:191–213

    Article  CAS  Google Scholar 

  • Groffman PM, Hardy JP, Fisk MC, Fahey TJ, Driscoll CT (2009) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12:927–943

    Article  CAS  Google Scholar 

  • Juice S, Fahey T, Siccama T, Driscoll C, Denny E, Eagar C, Clevett N, Minocha K, Richardson A (2006) Response of Sugar maple to calcium addition to a northern hardwood forest. Ecology 87:1267–1280

    PubMed  Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycles in catchments. In: Kendall C, McDonnell J (eds) Catchment hydrology. Elsevier, Netherlands, pp 519–576

    Google Scholar 

  • Long R, Horsley S, Hallett R, Bailey S (2009) Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol Appl 19:1454–1466

    PubMed  Article  Google Scholar 

  • Lovett G, Mitchell M (2004) Sugar maple and nitrogen cycling in the forests of eastern North America. Front Ecol Environ 2:81–88

    Article  Google Scholar 

  • Lovett G, Weathers K, Arthur M (2002) Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–718

    Article  CAS  Google Scholar 

  • Melillo J, Aber J, Muratore J (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Mitchell M (2001) Linkages of nitrate losses in watersheds to hydrological processes. Hydrol Process 15:3305–3307

    Article  Google Scholar 

  • Mitchell M, Foster N, Shepard J, Morrison I (1992) Nutrient cycling in Huntington Forest and Turkey Lakes deciduous stands: nitrogen and sulfur. Can J For Res 22:457–464

    Article  CAS  Google Scholar 

  • Mitchell M, Driscoll C, Murdoch P, Likens G, Kahl J, Pardo L (1996) Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ Sci Technol 30:2609–2612

    Article  CAS  Google Scholar 

  • Mitchell M, Iwatsubo G, Ohrui R, Nakagawa Y (1997) Nitrogen saturation in Japanese forests: an evaluation. For Ecol Manag 97:39–51

    Article  Google Scholar 

  • Mitchell M, Raynal D, Driscoll C (2009) Response of Adirondack ecosystems to atmospheric pollutants and climate change at the Huntington forest and Arbutus watershed: research findings and implications for public policy. NYSERDA 4917 Report 09-08. http://www.nyserda.org/publications/09-08response_of_adirondack_ecosystems.pdf

  • Oberle SL, Keeney DR (1990) Factors influencing corn fertilizer N requirements in the Northern Corn Belt. J Prod Agric 3:527–534

    Google Scholar 

  • Ohrui K, Mitchell M (1997) Nitrogen saturation in Japanese forested watersheds. Ecol Appl 7:391–401

    Article  Google Scholar 

  • Ohte N, Mitchell M, Shibata H, Tokuchi N, Toda H, Iwatsubo G (2001) Comparative evaluation on nitrogen saturation of forest catchments in Japan and North America. Proceedings of Acid Rain 2000, Japan. Water Air Soil Pollut 130:649–654

    Article  Google Scholar 

  • Page B, Mitchell M (2008a) Influences of a calcium gradient on soil inorganic nitrogen in the Adirondack Mountains, New York. Ecol Appl 18:1604–1614

    PubMed  Article  Google Scholar 

  • Page B, Mitchell M (2008b) The influence of American basswood (Tilia americana) and soil calcium concentrations on nitrification rates in a northern-hardwood forest. Can J For Res 38:667–676

    Article  CAS  Google Scholar 

  • Park J, Mitchell M, McHale P, Christopher S, Myers T (2003) Interactive effects of changing climate and atmospheric deposition on N and S biogeochemistry in a forested watershed of the Adirondack Mountains, New York State. Glob Change Biol 9:1602–1619

    Article  Google Scholar 

  • Piatek K, Mitchell M, Silva S, Kendall C (2005) Sources of nitrate in Adirondack surface water during dissimilar snowmelt events. Water Air Soil Pollut 165:13–35

    Article  CAS  Google Scholar 

  • Rabalais N (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112

    PubMed  Google Scholar 

  • Schaberg P, Tilley J, Hawley G, DeHayes D, Bailey S (2006) Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. For Ecol Manag 223:159–169

    Article  Google Scholar 

  • Sebestyen S, Boyer E, Shanley J, Kendall C, Doctor D, Aiken G, Ohte N (2008) Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest. Water Resour Res 44:1–14

    Article  Google Scholar 

  • Shortle W, Bondietti E (1992) Timing, magnitude, and impact of acidic deposition on sensitive forest sites. Water Air Soil Pollut 61:253–267

    Article  CAS  Google Scholar 

  • Stoddard J (1994) Long-term changes in watershed retention of nitrogen: its causes and consequences. In: Baker L (ed) Environmental chemistry of lakes and reservoirs. Advances in chemistry series 237. American Chemical Society, Washington, pp 223–284

    Chapter  Google Scholar 

  • Van Miegroet H, Cole D (1984) The impact of nitrification on soil acidification and cation leaching in a red alder ecosystem. J Environ Qual 13:586–590

    Article  Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea—how can it occur. Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek P, Aber J, Howarth R, Likens G, Matson P, Schindler D, Schlesinger W, Tilman G (1997) Human alteration of the global nitrogen cycle: causes and consequences. Ecol Appl 7:737–750

    Google Scholar 

Download references

Acknowledgments

I gratefully appreciate the support of the US National Science Foundation, US Forest Service, the New York State Energy Research and Development Authority and the US Environmental Protection Agency. Cheryl Liptak provided valuable help in developing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron J. Mitchell.

About this article

Cite this article

Mitchell, M.J. Nitrate dynamics of forested watersheds: spatial and temporal patterns in North America, Europe and Japan. J For Res 16, 333 (2011). https://doi.org/10.1007/s10310-011-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10310-011-0278-1

Keywords

  • Biogeochemistry
  • Europe
  • Japan
  • Nitrogen
  • North America