Skip to main content
Log in

Forest land-use history affects the species composition and soil properties of old-aged hillock forests in Estonia

  • Special Feature: Original article
  • Approaches for forest disturbances studies: natural variability and tree regeneration
  • Published:
Journal of Forest Research

Abstract

Decisions regarding forest typology, management and protection are often based on the structures of present-day forests, ignoring their successional history. Forests growing on kames, eskers and various moraine hillocks common in regions with Holocene glaciation are good examples of this approach. In Estonia, these forests locally persist as fragments of continuous primary forest, but usually they are situated on former slash-and-burn areas (bushlands) or reforested agricultural land. Our aim was to elucidate the strength of the effect of long-term land-use history on the present-day vegetation compositions of mature hillock forests and their soil chemistry. It appeared that even the mature secondary hillock forests are still distinct from historically continuous stands in terms of species composition. We discovered connections between stand history and species content in hillock forests as well as transformed soil properties. The carbon and nitrogen contents in the humus horizons of secondary forests are lower while their carbon–nitrogen ratios are higher than in continuous forests. The relationship between vegetation and stand history is demonstrated by the higher proportions of anthropophytic and apophytic species in the herb layer of the secondary forests. The presence of species that are tolerant of anthropogenic impact on the secondary hillock forests floor can also be partly explained by the effect of different species in the tree and shrub layers, gaps in the tree canopy, and the boundary effect caused by the small areas of forest patches, neighboring grasslands or fields. The extinction debt in secondary communities should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auniņš A, Bambe B, Eņģele L, Ikauniece S, Kabucis I, Laime B, Lārmanis V, Rēriha I, Rove I, Rūsiņa S, Salmiņa L, Sniedze R (2010) Eiropas Savienības aizsargājamie biotopi Latvijā. Latvijas Dabas fonds, Rīga

    Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:1–163

    Article  Google Scholar 

  • Brand T, Parker VT (1995) Scale and general laws of vegetation dynamics. Oikos 72:375–380

    Article  Google Scholar 

  • Brunet J (1993) Environmental and historical factors limiting the distribution of rare forest grasses in south Sweden. For Ecol Manag 61:263–275

    Article  Google Scholar 

  • Bušs K (1997) Forest ecosystems classification in Latvia. Proc Latvian Acad Sci Sect B 51:204–218

    Google Scholar 

  • Cajander AK (1909) Über Waldtypen. Fennia 28:1–176

    Google Scholar 

  • Cajander AK (1926) The theory of forest types. Acta For Fenn 29:1–108

    Google Scholar 

  • Cajander AK (1930) Wesen und Bedeutung der Wadtypen. Silva Fenn 1:1–175

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Inst Wash Publ 242:1–512

    Google Scholar 

  • Cousins SAO, Eriksson O (2001) The influence of management history and habitat on plant species richness in a rural hemiboreal ladscape, Sweden. Landsc Ecol 17:517–529

    Article  Google Scholar 

  • Delcamp M, Gourlet-Fleury S, Flores O, Garnier E (2008) Can functional classification of tropical trees predict population dynamics after disturbance? J Veg Sci 19:209–220

    Article  Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. Grundlagen und Methoden. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Ejrnæs R, Liira J, Poulsen RS, Nygaard B (2008) When has an abandoned field become a semi-natural grassland or heathland? Environ Manag 42:707–716

    Article  Google Scholar 

  • Etverk I (1974) Metsa õpitakse tundma ja kasutama. In: Valk U, Eilart J (eds) Eesti metsad. Valgus, Tallinn, pp 40–60

    Google Scholar 

  • European Union Habitat Directive (1992) Council Directive 92/43/EEC of May, 21, 1992 on the conservation of natural habitats and of wild fauna and flora. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:NOT, accessed 17 Nov 2010

  • Fedorchuk VN, Neshatayev VYu, Kuznetsova ML (2005) Forest ecosystems of the north-western regions of Russia: typology, dynamics, forest management features. Forestry Scientific Research Institute, St. Petersburg (in Russian)

  • Feist MA, Phillippe LR, Busemeyer DT, Ebinger JE (2004) Vegetation survey of Dean Hills Nature Preserve, Fayette County, Illinois. Castanea 69:52–66

    Article  Google Scholar 

  • Frelich LE (2002) Forest dynamics and disturbance regimes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frey TE-A (1973) The Finnish school and forest site-types. In: Whittaker RH (ed) Ordination and classification of communities (Handbook of Vegetation Science, vol V). Junk, The Hague, pp 403–433

  • Harper KA, Macdonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Harvey BD, Leduc A, Gauthier S, Bergeron Y (2002) Stand-landscape integration in natural disturbance-based management of the southern boreal forest. For Ecol Manag 155:369–385

    Article  Google Scholar 

  • Heikinheimo O (1987) The impact of swidden cultivation on forests in Finland—extracts. Suomen Antropol 4:199–206

    Google Scholar 

  • Heikkinen RK (1991) Multivariate analysis of esker vegetation in southern Häme, S Finland. Ann Bot Fenn 28:201–224

    Google Scholar 

  • Herlin IS (2001) Approaches to forest edges as dynamic structures and functional concepts. Landscape Res 26:27–43

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    Article  PubMed  Google Scholar 

  • Ingerpuu N, Vellak K (eds) (1998) Eesti sammalde määraja. Eesti Loodusfoto, Tartu

    Google Scholar 

  • Jalas J (1955) Hemerobe and hemerochore Pflanzenarten. Acta Soc Pro Fauna Flora Fenn 72:1–15

    Google Scholar 

  • Jõgi J, Tarand A (1995) Nüüdiskliima. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 183–216

    Google Scholar 

  • Karu A, Muiste L (1958) Eesti metsakasvukohatüübid. Eesti Riiklik Kirjastus, Tallinn

    Google Scholar 

  • Katus A, Tappo E (eds) (1965) Eesti metsa-kasvukohatüübid. Eesti NSV Ministrite Nõukogu Metsanduse ja Looduskaitse Peavalitsus, Tallinn

    Google Scholar 

  • Klute A (ed) (1986) Methods of soil analysis. Part 1. Physical and mineralogical methods. Soil Science Society of America & American Society of Agronomy, Madison

  • Kõlli R (2002) Productivity and humus status of forest soils in Estonia. For Ecol Manag 171:169–179

    Article  Google Scholar 

  • Kukk T (1999) Eesti taimestik. Teaduste Akadeemia Kirjastus, Tartu

    Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Article  PubMed  Google Scholar 

  • Laasimer L (1965) Eesti NSV taimkate. Valgus, Tallinn

    Google Scholar 

  • Laasimer L, Masing V (1995) Taimestik ja taimkate. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 364–396

    Google Scholar 

  • Leht M (ed) (2007) Eesti taimede määraja. Eesti Loodusfoto, Tartu

    Google Scholar 

  • Liira J, Kohv K (2010) Stand characteristics and biodiversity indicators along the productivity gradient in boreal forests: defining a critical set of indicators for the monitoring of habitat nature quality. Plant Biosyst 144:211–220

    Google Scholar 

  • Liira J, Sepp T (2009) Indicators of structural and habitat natural quality in boreo-nemoral forests along the management gradient. Ann Bot Fenn 46:308–325

    Google Scholar 

  • Liira J, Sepp T, Parrest O (2007) The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manag 250:34–46

    Article  Google Scholar 

  • Lippmaa T (1933) Taimeühingute uurimise metoodika ja Eesti taimeühingute klassifikatsiooni põhijooned. Loodusuurijate Seltsi Aruanded 40:1–169

    Google Scholar 

  • Lõhmus E (1969) Mõnedest metsade klassifitseerimise printsiipidest Eesti NSV tingimustes. In: Trass H (ed) Loodusuurijate Seltsi aastaraamat. Valgus, Tallinn, 59:168–178

  • Lõhmus E (1974) Metsad rabadest nõmmede ja loopealseteni. In: Valk U, Eilart J (eds) Eesti metsad. Valgus, Tallinn, pp 60–98

    Google Scholar 

  • Lõhmus E (2004) Eesti metsakasvukohatüübid, 2nd edn. Eesti Loodusfoto, Tartu

    Google Scholar 

  • Mander Ü, Reintam L (2001) Development of Estonian landscapes. In: Mander Ü, Printsmann A, Palang H (eds) Development of European landscapes. IALE European Conference Proceedings, Publicationes Instituti Geographici Universitatis Tartuensis 92, vol I. Tartu Ülikooli Kirjastus, Tartu, pp 25–31

  • Matas CD (2004) Dynamics of nutrients in slash and burn agroforestry in Koli National Park. Tutkittu ja tuntematon Koli. Metsantutkimuslaitoksen tiedonantoja. Finnish Forest Research Institute, Helsinki, 915:29–46

  • Maxwell JF (2004) A synopsis of the vegetation of Thailand. Nat Hist J Chulalongkorn Univ 4:19–29

    Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data, v.5.20. MjM Software, Gleneden Beach

  • Meier E, Paal J, Liira J, Jüriado I (2005) Influence of tree stand age and management on the species diversity in Estonian eutrophic alvar and boreo-nemoral Pinus sylvestris forests. Scand J For Res 20:135–144

    Article  Google Scholar 

  • Meikar T, Uri V (2000) Of the management of bushland in Estonia. In: Meikar T, Etverk I (eds) Proceedings of the Academical Forestry Society, XI. Estonian forests and forestry at the turn of the Millenium. Forest Research Institute of Estonian Agricultural University, Tartu, pp 103–120

  • Mikola P (1982) Application of vegetation science to forestry. In: Jahn G (ed) Vegetation science in forestry. Junk, The Hague, pp 199–224

    Google Scholar 

  • Oberdorfer, E (1990) Pflanzensoziologische Excursionsflora, 6th edn. Verlag Eulen Ulmer, Stuttgart

  • Ovaskainen O, Hanski I (2004) Metapopulation dynamics in highly fragmented landscapes. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier, Burlington

  • Paal J (2007) Loodusdirektiivi elupaigatüüpide käsiraamat. Auratrükk, Tallinn

    Google Scholar 

  • Paal J, Rooma I, Turb M (2004a) Sürjametsadest Otepää kõrgustikul. Metsanduslikud Uurimused/Forestry Studies 40:89–103

  • Paal J, Rooma I, Turb M (2004b) Kas Karula kuplitel kasvab sürjametsi? Eesti Loodusuurijate Seltsi Aastaraamat 82:90–131

  • Paal J, Rajandu E, Köster T (2010) Vegetation-environment relationship in Estonian Hepatica site type forests in the light of A. K. Cajander’s forest site type approach. Balt For 16:194–208

    Google Scholar 

  • Påhlsson L (ed) (1998) Vegetationstyper i Norden (TemaNord 1998:510). Nordisk Ministerråd, København

  • Pärtel M, Helm A, Reitalu T, Liira J, Zobel M (2007) Grassland diversity related to the Late Iron Age human population density. J Ecol 95:574–582

    Article  Google Scholar 

  • Rajakorpi A (1987) Topographic, microclimatic and edaphic control of the vegetation in the central part of the Hämeenkangas esker complex, western Finland. Acta Bot Fenn 134:1–70

    Google Scholar 

  • Reintam L (1995) Muldade kujunemine. In: Raukas A (ed) Eesti. Loodus. Valgus & Eesti Entsüklopeediakirjastus, Tallinn, pp 419–429

    Google Scholar 

  • Sepp T, Liira J (2009) Vanade salumetsade rohurinde koosseis ja seda mõjutavad tegurid. Metsanduslikud Uurimused/Forestry Studies 50:23–41

    Article  Google Scholar 

  • Sukopp H (1969) Der Einfluß des Menschen auf die Vegetation. Vegetatio 17:360–371

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide. Biometris/Wageningen/České Budějovice

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Troska G (1987) Eesti külad XIX sajandil. Ajaloolis etnograafiline uurimus. Eesti Raamat, Tallinn

    Google Scholar 

  • van der Maarel E (1988) Vegetation dynamics: patterns in time and space. Vegetatio 77:7–19

    Article  Google Scholar 

  • van Reeuwijk LP (ed) (1995) Procedures for soil analysis (Technical Paper 9). ISRIC, Wageningen

  • Vorob’eva LA (1998) Khimicheski analiz pochv. Izdatel’stvo Moskovskogo Universiteta, Moskva (in Russian)

    Google Scholar 

  • Webb KT, Marshall LB (1999) Ecoregions and ecodistricts of Nova Scotia. Crops and Livestock Research Centre/Indicators and Assessment Office, Truro/Hull

  • WRB (2006) World reference base of soil resources. World Soil Resour Rep 103:1–128

    Google Scholar 

Download references

Acknowledgments

The study was supported by Estonian Science Foundation grants (2339, 7878 and 8060), the target-financing project SF0180012s09, and by the European Union through the European Regional Development Fund (the Centre of Excellence FIBIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaanus Paal.

About this article

Cite this article

Paal, J., Turb, M., Köster, T. et al. Forest land-use history affects the species composition and soil properties of old-aged hillock forests in Estonia. J For Res 16, 244–252 (2011). https://doi.org/10.1007/s10310-011-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-011-0258-5

Keywords

Navigation