Skip to main content
Log in

Differences in leafminer (Phyllonorycter, Gracillariidae, Lepidoptera) and aphid (Tuberculatus, Aphididae, Hemiptera) composition among Quercus dentata, Q. crispula, Q. serrata, and their hybrids

  • Original Article
  • Published:
Journal of Forest Research

Abstract

Leafminer (Phyllonorycter, Gracillariidae, Lepidoptera) and aphid (Tuberculatus, Aphididae, Hemiptera) composition were studied in three deciduous oak species, Quercus dentata, Q. crispula, and Q. serrata, and their hybrids in Tomakomai Experimental Forest of Hokkaido University, Hokkaido, northern Japan. Identification of trees in this forest was done mainly on the basis of discriminant analysis on leaf morphology with reference to trees in pure Q. dentata and Q. crispula stands and a Q. serrata stand mixed with Q. crispula. The results suggested that hybridization occurred in all combinations (i.e. Q. dentataQ. crispula, Q. crispulaQ. serrata, and Q. serrataQ. dentata) and the frequency of hybrids was approximately 10%. The composition of Phyllonorycter and Tuberculatus species differed between Q. dentata and Q. crispula or Q. serrata, but did not differ between Q. crispula and Q. serrata. Thus, Q. dentata could differ from Q. crispula and Q. serrata in chemical properties that determine herbivore host selection, survival, and performance, possibly reflecting eco-physiological differences or phylogenetic distances. The study insects were divided into three groups: species specialized to Q. dentata (three Phyllonorycter and one Tuberculatus species), those to Q. crispula and Q. serrata (six Phyllonorycter and two Tuberculatus species), and a species collected at least from Q. dentata and Q. crispula (one Tuberculatus species). Putative hybrid trees of Q. dentata and Q. crispula harbored both Q. dentata-specific and Q. crispula-specific insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe Y (1986) Taxonomic status of the Andricus mukaigawae complex and its speciation with geographic parthenogenesis (Hymenoptera: Cynipidae). Appl Entomol Zool 21:436–447

    Google Scholar 

  • Abe Y (1988) Two host races in Andricus mukaigawae (Mukaigawa) (Hymenoptera: Cynipidae). Appl Entomol Zool 23:381–387

    Google Scholar 

  • Abe Y (1998) Karyotype differences and speciation in the gall wasp Andricus mukaigawae (s. lat.) (Hymenoptera: Cynipidae), with description of the new species A. kashiwaphilus. Entomol Scand 29:131–135

    Google Scholar 

  • Aguilar JM, Boecklen WJ (1992) Patterns of herbivory in the Quercus grisea × Quercus gambelii species complex. Oikos 64:498–504

    Article  Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, New York

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Arnold ML, Hodges SA (1995) Are natural hybrids fit or unfit relative to their parents? Trends Ecol Evol 10:67–71

    Article  PubMed  CAS  Google Scholar 

  • Boecklen WJ, Spellenberg R (1990) Structure of herbivore communities in two oak (Quercus spp.) hybrid zones. Oecologia 85:92–100

    Article  Google Scholar 

  • Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petrea (Matt.) Liebl. and Quercus pubescence Willd. (Fagaceae) in northern and central Italy. Ann Bot 85:325–333

    Article  Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon 24:45–50

    Article  Google Scholar 

  • Coley PD, Bryant JP, Chapin T (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  PubMed  CAS  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants, a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Feeny P (1975) Biochemical coevolution between plants and their insect herbivores. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 3–19

    Google Scholar 

  • Floate KD, Whitham TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141:651–662

    Article  PubMed  CAS  Google Scholar 

  • Fritz RS, Nichols-Orians CM, Brunsfeld SJ (1994) Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117

    Article  Google Scholar 

  • Fujihara J, Sato H, Kumata T (2000) The pupal cremasters as a diagnostic character for species of Phyllonorycter (Lepidoptera: Gracillariidae), with description of a new species of the nipponicella complex from Japan. Insect Syst Evol 31:387–400

    Article  Google Scholar 

  • González-Rodríguez A, Arias DM, Oyama K (2005) Genetic variation and differentiation of populations within the Quercus affinisQuercus laurina (Fagaceae) complex analysed with RAPD markers. Can J Bot 83:155–162

    Article  Google Scholar 

  • Hashizume H, Suo Z, Lee JH, Okada S, Yamamoto F (1994) Fundamental studies on the breeding of Quercus species (II): on the characters of leaves and fruits in natural hybrids among Q. dentata, Q. serrata and Q. mongolica var. grosseserrata. Monogr Collect Jpn For Soc 105:325–328 (in Japanese)

    Google Scholar 

  • Hattori K, Ishida TA, Miki K, Suzuki M, Kimura MT (2004) Differences in response to simulated herbivory between Quercus crispula and Quercus dentata. Ecol Res 19:323–329

    Article  Google Scholar 

  • Higuchi H (1969) A revision of the genus Tuberculatus Mordwilko in Japan with description of a new species. Insecta Matsumurana 32:111–123

    Google Scholar 

  • Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Tree 18:566–575

    Google Scholar 

  • Howard DJ, Preszler W, Williams J, Fenchel S, Boecklen W (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755

    Article  Google Scholar 

  • Huang C, Zhang Y, Bartholomew B (1999) Fagaceae. In: Wu ZY, Paven PH (eds) Flora of China, vol 4. Science Press. Beijing, and Missouri Botanical Garden Press, St Louis, pp 314–400

    Google Scholar 

  • Igarashi Y (1978) Vegetational succession in the Tomakomai Experiment Forest area. Res Bull Collect Exp For Hokkaido Univ 44:405–427 (in Japanese)

    Google Scholar 

  • Ishida TA, Hattori K, Sato H, Kimura MT (2003) Differentiation and hybridization between Quercus crispula and Q. dentata (Fagaceae): insights from morphological traits, amplified fragment length polymorphism markers, and leafminer composition. Am J Bot 90:769–776

    Article  PubMed  Google Scholar 

  • Ishida TA, Hattori K, Kimura MT (2004) Abundance of leafminers and leaf area loss by chewing herbivores in hybrids between Quercus crispula and Quercus dentata. Can J For Res 34:2501–2507

    Article  Google Scholar 

  • Jiggins CD, Mallet J (2000) Bimodal hybrid zone and speciation. Trends Ecol Evol 15:250–252

    Article  PubMed  Google Scholar 

  • Kanazashi A, Kanazashi T, Kawahara T (1997) Evidence of reproductive barrier between closely related species of Quercus. In: Steiner KC (ed) Proceedings of the conference on diversity and adaptation in oak species. Pennsylvania State University, Philadelphia, p. 243

  • Kanno M, Yokoyama J, Suyama Y, Ohyama M, Itoh T, Suzuki M (2004) Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. J Plant Res 117:311–317

    Article  PubMed  Google Scholar 

  • Kitamura M, Nakamura T, Hattori K, Ishida TA, Shibata S, Sato H, Kimura MT (2007) Among-tree variation in leaf traits and herbivore attacks in a deciduous oak, Quercus dentata. Scand J For Res 22:211–218

    Article  Google Scholar 

  • Kleinschmit JRG, Bacilieri R, Kremer A, Roloff A (1995) Comparison of morphological and genetic traits of pedunculate oak (Q. robur L.) and sessile oak (Q. petrea (Matt.) Liebl.). Silvae Genet 44:5–6

    Google Scholar 

  • Lee JH, Hashizume H, Watanabe A, Fukuda T, Shiraishi S, Yamamoto F (1997) RAPD variation among Quercus species distributed in temperate deciduous forests of the Hiruzen Mountains. J For Res 2:121–123

    Article  Google Scholar 

  • Matsuda K (1996) Autecology of Quercus serrata. In: Kameyama A (ed) Vegetation management of coppice: its ecosystem and management technology. Soft Science Inc, Tokyo, pp 69–77

    Google Scholar 

  • Matsumoto A, Kawahara T, Kanazashi A, Yoshimaru H, Takahashi M, Tsumura Y (2009) Differentiation of three closely related Japanese oak species and detection of interspecific hybrids using AFLP markers. Botany 87:145–153

    Article  CAS  Google Scholar 

  • Migita C, Chiba Y, Tange T (2007) Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol 27:63–70

    PubMed  CAS  Google Scholar 

  • Mishima T, Taniguchi S, Taniguchi M (1955) The actual states of wind damage in the Tomakomai Experiment Forest of Hokkaido University (1); on the plantation of strange land species. Res Bull Collect Exp For Hokkaido Univ 17:715–748 (in Japanese)

    Google Scholar 

  • Mishima T, Taniguchi S, Taniguchi M, Hishinuma Y (1958) The actual states of wind damage in the Tomakomai Experiment Forest of Hokkaido University (2); on the natural forest. Res Bull Collect Exp For Hokkaido Univ 19:1–39 (in Japanese)

    Google Scholar 

  • Muir G, Fleming CC, Schlötterer C (2000) Species status of hybridizing oaks. Nature 405:1016

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima E, Murakami M, Hiura T (2001) Effects of herbivory and light conditions on induced defense in Quercus crispula. J Plant Res 114:403–409

    Article  Google Scholar 

  • Ohba H (1989) Fagaceae. In: Satake Y, Hara H, Watari S, Tominari T (eds) Wild flowers of Japan: woody plants, vol 1. Heibonsha, Tokyo, pp 66–78 (in Japanese)

    Google Scholar 

  • Okaura T, Quang ND, Ubukata M, Harada K (2007) Phylogeographic structure and late Quaternary population history of the Japanese oak Quercus mongolica var. crispula and related species revealed by chloroplast DNA variation. Genes Genet Syst 82:465–477

    Article  PubMed  CAS  Google Scholar 

  • Quednau FW (1999) Atlas of the drepanosiphine aphids of the world. Part I: Panaphidini Oestlund, 1922—Myzocallidina Börner, 1942 (1930) (Hemiptera: Aphididae: Calaphidinae). Contr Am Entomol Inst 31:1–281

    Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82:944–953

    Article  Google Scholar 

  • Sage RD, Heyneman D, Lim KC, Wilson AC (1986) Wormy mice in a hybrid zone. Nature 324:60–63

    Article  PubMed  CAS  Google Scholar 

  • Sato H (1991) Differential resource utilization and co-occurrence of leaf miners on oak (Quercus dentata). Ecol Entomol 16:105–113

    Article  Google Scholar 

  • Sato H, Okabayashi Y, Kamijo K (2002) Structure and function of parasitoid assemblages associated with Phyllonorycter leafminers (Lepidoptera: Gracillariidae) on deciduous oaks in Japan. Environ Entomol 31:1052–1061

    Article  Google Scholar 

  • Schoonhoven LM, Jermy T, van Loon JJA (1998) Insect–plant biology. Chapman & Hall, London

    Google Scholar 

  • Shibata S, Ishida TA, Soeya F, Morino N, Yoshida K, Sato H, Kimura MT (2001) Within-tree variation in density and survival of leafminers on oak Quercus dentata. Ecol Res 16:135–143

    Article  Google Scholar 

  • Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants. Community patterns and mechanisms. Blackwell, Oxford

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University Chicago Press, Chicago

    Google Scholar 

  • Tomlinson PT, Jensen RJ, Hancock JF (2000) Do whole tree silvic characters indicate hybridization in red oak (Quercus Section Lobatae)? Am Midl Nat 143:154–168

    Article  Google Scholar 

  • Tovar-Sánchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagacae) in Mexico: morphological and molecular evidence. Am J Bot 91:1352–1363

    Article  PubMed  Google Scholar 

  • Tovar-Sánchez E, Oyama K (2006) Effect of hybridization of the Quercus crassifolia × Quercus crassipes complex on the community structure of endophagous insects. Oecologia 147:702–713

    Article  PubMed  Google Scholar 

  • Ubukata M, Itahana N, Kohono N (1999) Cross-compatibility between Quercus mongolica var. grosseserrata and Q. dentata and both the reproductive ability and flowering time of their interspecific hybrids. J Jpn For Soc 81:286–290 (In Japanese with English summary)

    Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Wada N, Murakami M, Yoshida K (2000) Effects of herbivore-bearing adult trees of the oak Quercus crispula on the survival of their seedlings. Ecol Res 15:219–227

    Article  Google Scholar 

  • Whitham TG (1989) Plant hybrid zones as sinks for pests. Science 24:1490–1493

    Google Scholar 

  • Williams JH, Boecklen WJ, Howard DJ (2001) Reproductive processes in two oak (Quercus) contact zones with different levels of hybridization. Heredity 87:680–690

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K (1985) Seasonal population trends of macrolepidopterous larvae on oak trees in Hokkaido, northern Japan. Kontyû 53:125–133

    Google Scholar 

Download references

Acknowledgments

We thank Y. Murata, T. Shindo, F. Nomano, and S. Furihata for their assistance in field work. This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan (no. 15207008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito T. Kimura.

About this article

Cite this article

Hata, Y., Hashiba, T., Nakamura, T. et al. Differences in leafminer (Phyllonorycter, Gracillariidae, Lepidoptera) and aphid (Tuberculatus, Aphididae, Hemiptera) composition among Quercus dentata, Q. crispula, Q. serrata, and their hybrids. J For Res 16, 309–318 (2011). https://doi.org/10.1007/s10310-010-0230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-010-0230-9

Keywords

Navigation