Skip to main content
Log in

EEG/MEG-Quellenrekonstruktion bei nichtläsioneller Epilepsie

EEG/MEG source reconstruction in non-lesional epilepsy

  • Leitthema
  • Published:
Clinical Epileptology Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Nichtläsionelle Epilepsien haben derzeit ein schlechteres postoperatives Ergebnis als Epilepsien mit Läsionsnachweis. EEG- und MEG-Quellenrekonstruktion (ESI/MSI) leisten zu der präoperativen Eingrenzung des epileptogenen Fokus einen wichtigen Beitrag.

Ziel der Arbeit

Ziel ist es, einen Überblick über den Status quo zu ESI und MSI bei nichtläsionellen Epilepsien zu geben und die Relevanz dieser Techniken in der präoperativen Diagnostik hervorzuheben.

Material und Methoden

Nichtsystematisches Literaturreview.

Ergebnisse und Schlussfolgerungen

Quellenrekonstruktion bei nichtläsionellen Epilepsien hat einen großen Nutzen bezüglich der Lokalisationspräzision des epileptogenen Fokus, was sich in einer Übereinstimmung der Resektionszone bzw. des intrakraniellen EEGs und der Quellenrekonstruktion bei postoperativ anfallsfreien Patienten*innen zeigt. Weiterhin enthält diese Technik nichtredundante Informationen, indem eine bis dahin unerkannte Läsion im Nachhinein identifiziert wurde. Jedoch wird ESI von nur 9, MSI von nur 7 von 25 europäischen Epilepsiezentren zur prächirurgischen Diagnostik eingesetzt. Semiautomatische Quellenrekonstruktion sowie Eingrenzung der Spike- und Elektrodenanzahl könnten helfen, die Praktikabilität und die Verbreitung dieser wichtigen Methoden in den Epilepsiezentren zu erhöhen.

Abstract

Background

The postsurgical outcome of non-lesional epilepsy is worse compared to that of lesional epilepsy. Electric and magnetic source imaging (ESI/MSI) are very important methods for the presurgical identification of the epileptogenic focus.

Objective

The aim of this article is to provide an overview on the current state of knowledge on ESI and MSI in non-lesional epilepsy.

Material and methods

The article presents a non-systematic literature review.

Results and conclusion

Source imaging has proven its usefulness in the localization of the epileptogenic focus in non-lesional epilepsy patients. The concordance of the resection zone or intracranial EEG and the source imaging in patients with a good surgical outcome was high. It provides non-redundant information in a relevant proportion of patients by identifying unknown lesions; however, only 9 of 25 surveyed European epilepsy centers reported using ESI in their presurgical evaluation. Semi-automated source reconstruction and limitation of the number of spikes and electrodes needed could help to improve its practicability and increase its use in epilepsy centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abdallah C, Maillard LG, Rikir E et al (2017) Localizing value of electrical source imaging: frontal lobe, malformations of cortical development and negative MRI related epilepsies are the best candidates. Neuroimage Clin 16:319–329

    PubMed  PubMed Central  Google Scholar 

  2. Bagić AI, Knowlton RC, Rose DF et al (2011) ACMEGS clinical practice guideline (CPG) committee. American clinical magnetoencephalography society clinical practice guideline 1: recording and analysis of spontaneous cerebral activity. J Clin Neurophysiol 28(4):348–354

    PubMed  Google Scholar 

  3. Brodbeck V, Spinelli L, Lascano AM et al (2010) Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 51:583–591

    PubMed  Google Scholar 

  4. Cloppenborg T, May T, Blümcke I et al (2016) Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry 87:1322–1329

    PubMed  Google Scholar 

  5. Cox BC, Danoun OA, Lundstrom BN et al (2021) EEG source imaging concordance with intracranial EEG and epileptologist review in focal epilepsy. Brain Commun 3:278

    Google Scholar 

  6. Duez L, Tankisi H, Hansen PO et al (2019) Electromagnetic source imaging in presurgical workup of patients with epilepsy: a prospective study. Neurology 92:576–586

    Google Scholar 

  7. Engel J (2018) The current place of epilepsy surgery. Curr Opin Neurol 31:192–197

    PubMed  PubMed Central  Google Scholar 

  8. Foged MT, Martens T, Pinborg LH et al (2020) Diagnostic added value of electrical source imaging in presurgical evaluation of patients with epilepsy: a prospective study. Clin Neurophysiol 131:324–329

    PubMed  Google Scholar 

  9. Funke ME, Moore K, Orrison WW Jr et al (2011) The role of magnetoencephalography in “nonlesional” epilepsy. Epilepsia 52(4):10–14

    PubMed  Google Scholar 

  10. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    PubMed  Google Scholar 

  11. He B, Sohrabpour A, Brown E et al (2018) Electrophysiological source imaging: a noninvasive window to brain dynamics. Annu Rev Biomed Eng 20:171–196

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heers M, Chowdhury RA, Hedrich T et al (2016) Localization accuracy of distributed inverse solutions for electric and magnetic source imaging of interictal epileptic discharges in patients with focal epilepsy. Brain Topogr 29:162–181

    PubMed  Google Scholar 

  13. Heide E, van de Velden D, Garnica D, Hewitt D, Riedel C, Focke NK (2022) Feasibility of high-density electric source imaging in the presurgical workflow: effect of number of spikes and automated spike detection

    Google Scholar 

  14. Hirano R, Emura T, Nakata O et al (2022) Fully-automated spike detection and dipole analysis of epileptic MEG using deep learning. IEEE Trans Med Imaging 41(10):2879–2890

    PubMed  Google Scholar 

  15. Kaiboriboon K, Lüders HO, Hamaneh M et al (2012) EEG source imaging in epilepsy—practicalities and pitfalls. Nat Rev Neurol 8(9):498–507

    PubMed  Google Scholar 

  16. Kwan P, Arzimanoglou A, Berg AT et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51:1069–1077

    CAS  PubMed  Google Scholar 

  17. Lantz G, Grave de Peralta R, Spinelli L et al (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114:63–69

    CAS  PubMed  Google Scholar 

  18. Lantz G, Spinelli L, Seeck M et al (2003) Propagation of interictal epileptiform activity can lead to erroneous source localizations: a 128-channel EEG mapping study. J Clin Neurophysiol 20:311–319

    PubMed  Google Scholar 

  19. Li Y, Fogarty A, Razavi B et al (2022) Impact of high-density EEG in presurgical evaluation for refractory epilepsy patients. Clin Neurol Neurosurg 219:107336

    PubMed  Google Scholar 

  20. Lin F‑H, Witzel T, Ahlfors SP et al (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31:160–171

    PubMed  Google Scholar 

  21. McGonigal A, Bartolomei F, Régis J et al (2007) Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain 130:3169–3183

    PubMed  Google Scholar 

  22. Mégevand P, Seeck M (2020) Electric source imaging for presurgical epilepsy evaluation: current status and future prospects. Expert Rev Med Devices 17(5):405–412

    PubMed  Google Scholar 

  23. Michel CM, Brunet D (2019) EEG source imaging: a practical review of the analysis steps. Front Neurol 10:325

    PubMed  PubMed Central  Google Scholar 

  24. Michel CM, Murray MM, Lantz G et al (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    PubMed  Google Scholar 

  25. Mouthaan BE, Rados M, Barsi P et al (2016) Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe. Epilepsia 57:770–776

    PubMed  Google Scholar 

  26. Ntolkeras G, Tamilia E, AlHilani M et al (2022) Presurgical accuracy of dipole clustering in MRI-negative pediatric patients with epilepsy: validation against intracranial EEG and resection. Clin Neurophysiol 141:126–138

    PubMed  Google Scholar 

  27. Plummer C, Vogrin SJ, Woods WP et al (2019) Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 142:932–951

    PubMed  PubMed Central  Google Scholar 

  28. RamachandranNair R, Otsubo H, Shroff MM et al (2007) MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 48(1):149–157

    PubMed  Google Scholar 

  29. Rampp S, Stefan H, Wu X et al (2019) Magnetoencephalography for epileptic focus localization in a series of 1000 cases. Brain 142(10):3059–3071

    PubMed  Google Scholar 

  30. Rampp S, Scherg M (2018) Grundlagen der Quellenlokalisation. Z Epileptol 31:170–178

    Google Scholar 

  31. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124(9):1683–1700

    CAS  PubMed  Google Scholar 

  32. Russo A, Lallas M, Jayakar P et al (2016) The diagnostic utility of 3D-ESI rotating and moving dipole methodology in the pre-surgical evaluation of MRI-negative childhood epilepsy due to focal cortical dysplasia. Epilepsia 57(9):1450–1457

    PubMed  Google Scholar 

  33. Ryvlin P, Cross JH, Rheims S (2014) Epilepsy surgery in children and adults. Lancet Neurol 13:1114–1126

    PubMed  Google Scholar 

  34. Siegel AM, Jobst BC, Thadani VM et al (2001) Medically intractable, localization-related epilepsy with normal MRI: presurgical evaluation and surgical outcome in 43 patients. Epilepsia 42(7):883–888

    CAS  PubMed  Google Scholar 

  35. Sperli F, Spinelli L, Seeck M et al (2006) EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47:981–990

    PubMed  Google Scholar 

  36. Spinelli L, Baroumand AG, Vulliemoz S et al (2022) Semi-automatic interictal electric source localization based on long-term EEG monitoring: a prospective study. Epilepsia. https://doi.org/10.1111/epi.17460

    Article  Google Scholar 

  37. Sutherling WW, Mamelak AN, Thyerlei D et al (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71(13):990–996

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tonini C, Beghi E, Berg AT et al (2004) Predictors of epilepsy surgery outcome: a meta-analysis. Epilepsy Res 62(1):75–87

    CAS  PubMed  Google Scholar 

  39. Vakharia VN, Duncan JS, Witt J‑A et al (2018) Getting the best outcomes from epilepsy surgery. Ann Neurol 83:676–690

    PubMed  PubMed Central  Google Scholar 

  40. Vorderwülbecke BJ, Baroumand AG, Spinelli L et al (2021) Automated interictal source localisation based on high-density EEG. Seizure 92:244–251

    PubMed  Google Scholar 

  41. Vorderwülbecke BJ, Carboni M, Tourbier S et al (2020) High-density electric source imaging of interictal epileptic discharges: how many electrodes and which time point? Clin Neurophysiol 131(12):2795–2803

    PubMed  Google Scholar 

  42. Wang Y, Liu B, Fu L et al (2015) Use of interictal (18)F-fluorodeoxyglucose (FDG)-PET and magnetoencephalography (MEG) to localize epileptogenic foci in non-lesional epilepsy in a cohort of 16 patients. J Neurol Sci 355(1):120–124

    CAS  PubMed  Google Scholar 

  43. Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clin Neurophysiol 125(5):886–902

    PubMed  Google Scholar 

  44. Wiebe S, Blume WT, Girvin JP et al (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318

    CAS  PubMed  Google Scholar 

  45. Wieser HG, Blume WT, Fish D et al (2001) ILAE commission report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia 42:282–286

    CAS  PubMed  Google Scholar 

  46. Wilenius J, Medvedovsky M, Gaily E et al (2013) Interictal MEG reveals focal cortical dysplasias: special focus on patients with no visible MRI lesions. Epilepsy Res 105(3):337–348

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ev-Christin Heide.

Ethics declarations

Interessenkonflikt

M. Seeck hat eine minimale Beteiligung an Epilog©. N.K. Focke hat Honorare von Angelini, Bial, Eisai und Jazz Pharma für Vorträge und Beratertätigkeit erhalten. E.-C. Heide, S. Rampp und D. van de Velden geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Datenverfügbarkeitserklärung

Wenn es erwünscht ist, können klinischen Daten dieses Papers nach einer plausiblen Anfrage von dem korrespondierenden Autor verfügbar gemacht werden.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heide, EC., Rampp, S., van de Velden, D. et al. EEG/MEG-Quellenrekonstruktion bei nichtläsioneller Epilepsie. Clin Epileptol 36, 111–116 (2023). https://doi.org/10.1007/s10309-023-00579-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-023-00579-z

Schlüsselwörter

Keywords

Navigation