Skip to main content
Log in

Präzisionsmedizin für genetische Epilepsien – am Anfang des Weges?

Precision medicine in epilepsy—where are we now?

  • Übersichten
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Entwicklungsbedingte und epileptische Enzephalopathien beschreiben genetische Erkrankungen, die mit den Leitsymptomen von epileptischen Anfällen und geistigen bzw. globalen Entwicklungsstörungen einhergehen. Durch Klärung der genetischen Ursache besteht zunehmend ein besseres Verständnis für die gestörten zellulären Signalwege und die daraus resultierenden Störungen des Gleichgewichts erregender und inhibitorischer neuronaler Einflüsse. Die Kenntnis spezifischer Veränderungen an Rezeptoren, Ionenkanälen und Signalwegproteinen führt damit zur Identifizierung neuer pharmakologischer Angriffspunkte, die zunehmend in kleineren und größeren Fallstudien publiziert werden. Im klinischen Alltag ergeben sich dadurch neue Behandlungsansätze für sonst schwere und therapierefraktäre Entwicklungsstörungen und Epilepsiesyndrome. Die genaue Analyse der genetischen Veränderung erlaubt in einer steigenden Zahl von genetischen Epilepsien die Entwicklung spezifischer Therapieansätze, welche weiterer nationaler und internationaler Studien zur Bestätigung bedürfen.

Abstract

Developmental and epileptic encephalopathies of infancy comprise a heterogeneous group of neurodevelopmental disorders characterized by marked epileptic activity associated with developmental regression. The increasing number of known genes and the pathophysiological mechanism drive the way toward novel precision therapies. An increasing number of reports on specific treatments open new pathways for disease modifying therapies that need international collaborative studies to provide evidence in these rare genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Berg AT, Coryell J, Saneto RP et al (2017) Early-life epilepsies and the emerging role of genetic testing. JAMA Pediatr 171:863–871

    Article  Google Scholar 

  2. Burbano LE, Li M, Jancovski N et al (2020) Antisense oligonucleotide therapy for 〈em〉KCNT1〈/em〉 encephalopathy. bioRxiv:2020.2011.2012.379164

    Google Scholar 

  3. Doring JH, Saffari A, Bast T et al (2020) The phenotypic spectrum of PRRT2-associated paroxysmal neurologic disorders in childhood. Biomedicines 8

  4. Fitzgerald MP, Fiannacca M, Smith DM et al (2019) Treatment responsiveness in KCNT1-related epilepsy. Neurotherapeutics 16:848–857

    Article  CAS  Google Scholar 

  5. Guiberson NGL, Pineda A, Abramov D et al (2018) Mechanism-based rescue of Munc18‑1 dysfunction in varied encephalopathies by chemical chaperones. Nat Commun 9:3986

    Article  Google Scholar 

  6. Imbrici P, Liantonio A, Camerino GM et al (2016) Therapeutic approaches to genetic Ion channelopathies and perspectives in drug discovery. Front Pharmacol 7:121

    Article  Google Scholar 

  7. Jaitovich Groisman I, Hurlimann T, Godard B (2019) Parents of a child with epilepsy: Views and expectations on receiving genetic results from Whole Genome Sequencing. Epilepsy Behav 90:178–190

    Article  Google Scholar 

  8. Kaplanis J, Samocha KE, Wiel L et al (2020) Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586:757–762

    Article  CAS  Google Scholar 

  9. Kotulska K, Kwiatkowski DJ, Curatolo P et al (2021) Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann Neurol 89:304–314

    Article  CAS  Google Scholar 

  10. Krey I, Krois-Neudenberger J, Hentschel J et al (2020) Genotype-phenotype correlation on 45 individuals with West syndrome. Eur J Paediatr Neurol 25:134–138

    Article  Google Scholar 

  11. Mctague A, Howell KB, Cross JH et al (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–316

    Article  Google Scholar 

  12. Millichap JJ, Park KL, Tsuchida T et al (2016) KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol Genet 2:e96

    Article  Google Scholar 

  13. Saffari A, Brosse I, Wiemer-Kruel A et al (2019) Safety and efficacy of mTOR inhibitor treatment in patients with tuberous sclerosis complex under 2 years of age—a multicenter retrospective study. Orphanet J Rare Dis 14:96

    Article  Google Scholar 

  14. Sanchez Fernandez I, Loddenkemper T, Gainza-Lein M et al (2019) Diagnostic yield of genetic tests in epilepsy: a meta-analysis and cost-effectiveness study. Neurology 92(20):e2339–e2348

  15. Sands TT, Balestri M, Bellini G et al (2016) Rapid and safe response to low-dose carbamazepine in neonatal epilepsy. Epilepsia 57:2019–2030

    Article  CAS  Google Scholar 

  16. Schulz A, Ajayi T, Specchio N et al (2018) Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med 378:1898–1907

    Article  CAS  Google Scholar 

  17. Sisodiya SM (2020) Precision medicine and therapies of the future. Epilepsia. 6(Suppl 2):S90–S105

  18. Sonnek B, Doring JH, Mutze U et al (2020) Clinical spectrum and treatment outcome of 95 children with continuous spikes and waves during sleep (CSWS). Eur J Paediatr Neurol: S1090-3798(20)30203-8

  19. Symonds JD, Zuberi SM, Stewart K et al (2019) Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain 142:2303–2318

    Article  Google Scholar 

  20. Syrbe S (2019) Genetische epileptische Enzephalopathien des Säuglingsalters. Z Epileptol 32:87–97

    Article  Google Scholar 

  21. Syrbe S, Hedrich UBS, Riesch E et al (2015) De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 47:393–399

    Article  CAS  Google Scholar 

  22. Trump N, Mctague A, Brittain H et al (2016) Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 53:310–317

    Article  CAS  Google Scholar 

  23. Venot Q, Blanc T, Rabia SH et al (2018) Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558:540–546

    Article  CAS  Google Scholar 

  24. Wolff M, Johannesen KM, Hedrich UBS et al (2017) Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140:1316–1336

    Article  Google Scholar 

  25. Yokoi N, Fukata Y, Kase D et al (2015) Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nat Med 21:19–26

    Article  CAS  Google Scholar 

  26. Danti FR, Galosi S, Romani M et al (2017) GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet 3:e143

    Article  Google Scholar 

  27. Darin N, Reid E, Prunetti L et al (2016) Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am J Hum Genet 99:1325–1337

    Article  CAS  Google Scholar 

  28. Klepper J, Akman C, Armeno M et al (2020) Glut1 Deficiency Syndrome (Glut1DS): state of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 5:354–365

    Article  Google Scholar 

  29. Koch J, Mayr JA, Alhaddad B et al (2017) CAD mutations and uridine-responsive epileptic encephalopathy. Brain 140:279–286

    Article  Google Scholar 

  30. Lossius K, De Saint MA, Myren-Svelstad S et al (2020) Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav 105:106944

    Article  Google Scholar 

  31. Luthy K, Mei D, Fischer B et al (2019) TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model. Brain 142:2319–2335

    Article  Google Scholar 

  32. Mills PB, Camuzeaux SS, Footitt EJ et al (2014) Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 137:1350–1360

    Article  Google Scholar 

  33. Mills PB, Footitt EJ, Mills KA et al (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159

    Article  Google Scholar 

  34. Pierson TM, Yuan H, Marsh ED et al (2014) GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 1(3):190–198. https://doi.org/10.1002/acn3.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salpietro V, Dixon CL, Guo H et al (2019) AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun 10:3094

    Article  Google Scholar 

  36. Soto D, Olivella M, Grau C et al (2019) L‑Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal 12(586):eaaw0936. https://doi.org/10.1126/scisignal.aaw0936

  37. Tan TY, Sedmik J, Fitzgerald MP et al (2020) Bi-allelic ADARB1 variants associated with microcephaly, intellectual disability, and seizures. Am J Hum Genet 106:467–483

    Article  CAS  Google Scholar 

Download references

Danksagung

Ich danke der Dietmar Hopp Stiftung für finanzielle Unterstützung zur Erforschung der Grundlagen epileptischer Enzephalopathien (Projekt: 1DH1813319). Ich bedanke mich bei Prof. Dr. Gerhard Kluger für hilfreiche Kommentare zum Manuskript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Syrbe.

Ethics declarations

Interessenkonflikt

S. Syrbe gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrbe, S. Präzisionsmedizin für genetische Epilepsien – am Anfang des Weges?. Z. Epileptol. 34, 161–167 (2021). https://doi.org/10.1007/s10309-021-00409-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-021-00409-0

Schlüsselwörter

Keywords

Navigation