Skip to main content
Log in

Tiermodelle der mesialen Temporallappenepilepsie

Animal models of mesial temporal lobe epilepsy

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Tiermodelle sind in der experimentellen Epilepsieforschung noch immer unverzichtbar, um Beschränkungen in klinischer Forschung zu umgehen. Modelle der mesialen Temporallappenepilepsie (mTLE) sollten phänotypische und pathophysiologische Kriterien der Erkrankung replizieren. Am häufigsten verwendet werden mTLE-Modelle nach chemokonvulsiv oder elektrisch induziertem Status epilepticus in Nagetieren. Kenntnisse von Validitätskriterien und Beschränkungen dieser und anderer Modelle sind die Grundlage der Einordnung tierexperimenteller Befunde und werden in dieser Übersicht vorgestellt.

Abstract

Animal models are still indispensable in experimental epilepsy research in order to overcome restrictions in clinical research. Models of mesial temporal lobe epilepsy (mTLE) aim to replicate phenotypic and pathophysiological criteria of the disease. The mTLE models following chemoconvulsive or electrically induced status epilepticus in rodents are used most frequently. Knowledge of validity criteria and limitations of these and other models are the basis for the classification of animal experimental findings and are presented in this overview.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

FCD:

Fokale kortikale Dysplasie

HFO:

High frequency oscillations HS Hippocampussklerose

ILAE:

International League Against Epilepsy

(m)TLE:

(Mesiale) Temporallappenepilepsie

nb:

Nicht bekannt

PET:

Positronenemissionstomographie

PPS:

Perforant pathway stimulation (Tractus-perforans-Stimulation)

SE:

Status epilepticus

Literatur

  1. Becker AJ (2018) Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44(1):112–129. https://doi.org/10.1111/nan.12451

    Article  CAS  PubMed  Google Scholar 

  2. Becker AJ, Beck H (2018) New developments in understanding focal cortical malformations. Curr Opin Neurol 31(2):151–155. https://doi.org/10.1097/WCO.0000000000000531

    Article  PubMed  Google Scholar 

  3. Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54(7):1315–1329. https://doi.org/10.1111/epi.12220

    Article  PubMed  Google Scholar 

  4. Bouilleret V, Ridoux V, Depaulis A, Marescaux C, Nehlig A, Le Gal La Salle G (1999) Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience 89(3):717–729. https://doi.org/10.1016/s0306-4522(98)00401-1

    Article  CAS  PubMed  Google Scholar 

  5. Brandt C, Rankovic V, Töllner K, Klee R, Bröer S, Löscher W (2016) Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy Behav 61:120–131. https://doi.org/10.1016/j.yebeh.2016.05.012

    Article  PubMed  Google Scholar 

  6. Bumanglag AV, Sloviter RS (2008) Minimal latency to hippocampal epileptogenesis and clinical epilepsy after perforant pathway stimulation-induced status epilepticus in awake rats. J Comp Neurol 510(6):561–580. https://doi.org/10.1002/cne.21801

    Article  PubMed  PubMed Central  Google Scholar 

  7. Costard LS, Neubert V, Venø MT, Su J, Kjems J, Connolly NMC et al (2019) Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimul 12(6):1390–1401. https://doi.org/10.1016/j.brs.2019.06.009

    Article  PubMed  Google Scholar 

  8. Coulter DA, McIntyre DC, Löscher W (2002) Animal models of limbic epilepsies: what can they tell us? Brain Pathol 12(2):240–256

    Article  Google Scholar 

  9. Depaulis A, Hamelin S (2015) Animal models for mesiotemporal lobe epilepsy: the end of a misunderstanding? Rev Neurol 171(3):217–226. https://doi.org/10.1016/j.neurol.2015.01.558

    Article  CAS  PubMed  Google Scholar 

  10. Doheny HC, Whittington MA, Jefferys JGR, Patsalos PN (2002) A comparison of the efficacy of carbamazepine and the novel anti-epileptic drug levetiracetam in the tetanus toxin model of focal complex partial epilepsy. Br J Pharmacol 135(6):1425–1434. https://doi.org/10.1038/sj.bjp.0704606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129(4):911–922. https://doi.org/10.1093/brain/awl018

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K et al (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30(22):7484–7494. https://doi.org/10.1523/JNEUROSCI.0551-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34(6):774–780. https://doi.org/10.1002/ana.410340604

    Article  CAS  PubMed  Google Scholar 

  14. Garner JP (2014) The significance of meaning: why do over 90 % of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J 55(3):438–456. https://doi.org/10.1093/ilar/ilu047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grabenstatter HL, Clark S, Dudek FE (2007) Anticonvulsant effects of carbamazepine on spontaneous seizures in rats with Kainate‐induced epilepsy: comparison of Intraperitoneal injections with drug‐in-food protocols. Epilepsia 48(12):2287–2295. https://doi.org/10.1111/j.1528-1167.2007.01263.x

    Article  CAS  PubMed  Google Scholar 

  16. Grabenstatter HL, Ferraro DJ, Williams PA, Chapman PL, Dudek FE (2005) Use of chronic epilepsy models in antiepileptic drug discovery: the effect of topiramate on spontaneous motor seizures in rats with Kainate-induced epilepsy. Epilepsia 46(1):8–14. https://doi.org/10.1111/j.0013-9580.2005.13404.x

    Article  CAS  PubMed  Google Scholar 

  17. Groticke I, Hoffmann K, Loscher W (2008) Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp Neurol 213(1):71–83. https://doi.org/10.1016/j.expneurol.2008.04.036

    Article  CAS  PubMed  Google Scholar 

  18. Inostroza M, Cid E, Brotons-Mas J, Gal B, Aivar P, Uzcategui YG et al (2011) Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats. PLoS ONE 6(7):e22372. https://doi.org/10.1371/journal.pone.0022372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jefferys JG, Evans BJ, Hughes SA, Williams SF (1992) Neuropathology of the chronic epileptic syndrome induced by intrahippocampal tetanus toxin in rat: preservation of pyramidal cells and incidence of dark cells. Neuropathol Appl Neurobiol 18(1):53–70. https://doi.org/10.1111/j.1365-2990.1992.tb00764.x

    Article  CAS  PubMed  Google Scholar 

  20. Jefferys JG, Williams SF (1987) Physiological and behavioural consequences of seizures induced in the rat by intrahippocampal tetanus toxin. Brain 110(Pt 2):517–532. https://doi.org/10.1093/brain/110.2.517

    Article  PubMed  Google Scholar 

  21. Jefferys JGR, Borck C, Mellanby J (1995) Chronic focal epilepsy induced by intracerebral tetanus toxin. Ital J Neurol Sci 16(1):27–32. https://doi.org/10.1007/BF02229071

    Article  CAS  PubMed  Google Scholar 

  22. Jiang Y, Chun-Lei H, Liu H‑G, Wang X, Zhang X, Meng F‑G, Zhang J‑G (2018) Abnormal hippocampal functional network and related memory impairment in pilocarpine-treated rats. Epilepsia 59(9):1785–1795. https://doi.org/10.1111/epi.14523

    Article  CAS  PubMed  Google Scholar 

  23. Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR et al (2015) microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 5:17486. https://doi.org/10.1038/srep17486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N et al (2012) Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 53(7):1233–1244. https://doi.org/10.1111/j.1528-1167.2012.03525.x

    Article  PubMed  Google Scholar 

  25. Kelsey JE, Sanderson KL, Frye CA (2000) Perforant path stimulation in rats produces seizures, loss of hippocampal neurons, and a deficit in spatial mapping which are reduced by prior MK-801. Behav Brain Res 107(1):59–69. https://doi.org/10.1016/S0166-4328(99)00107-2

    Article  CAS  PubMed  Google Scholar 

  26. Kienzler-Norwood F, Costard L, Sadangi C, Müller P, Neubert V, Bauer S et al (2017) A novel animal model of acquired human temporal lobe epilepsy based on the simultaneous administration of kainic acid and lorazepam. Epilepsia 58(2):222–230. https://doi.org/10.1111/epi.13579

    Article  CAS  PubMed  Google Scholar 

  27. Kirschstein T, Köhling R (2016) Animal models of tumour-associated epilepsy. J Neurosci Methods 260:109–117. https://doi.org/10.1016/j.jneumeth.2015.06.008

    Article  PubMed  Google Scholar 

  28. Klein S, Bankstahl M, Loscher W (2015) Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 90:53–62. https://doi.org/10.1016/j.neuropharm.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  29. Lee EM, Park GY, Im KC, Kim ST, Woo C‑W, Chung JH et al (2012) Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Epilepsia 53(5):860–869. https://doi.org/10.1111/j.1528-1167.2012.03432.x

    Article  CAS  PubMed  Google Scholar 

  30. Lévesque M, Avoli M, Bernard C (2016) Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods 260:45–52. https://doi.org/10.1016/j.jneumeth.2015.03.009

    Article  PubMed  Google Scholar 

  31. Löscher W, Hirsch LJ, Schmidt D (2015) The enigma of the latent period in the development of symptomatic acquired epilepsy—Traditional view versus new concepts. Epilepsy Behav 52(Pt A):78–92. https://doi.org/10.1016/j.yebeh.2015.08.037

    Article  PubMed  Google Scholar 

  32. Mazzuferi M, Kumar G, Rospo C, Kaminski RM (2012) Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol 238(2):156–167. https://doi.org/10.1016/j.expneurol.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  33. Norwood BA, Bumanglag AV, Osculati F, Sbarbati A, Marzola P, Nicolato E et al (2010) Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single “cryptic” episode of focal hippocampal excitation in awake rats. J Comp Neurol 518(16):3381–3407. https://doi.org/10.1002/cne.22406

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL (2017) Models of seizures and epilepsy, 2. Aufl. Academic Press, Amsterdam

    Google Scholar 

  35. Pitkänen A, Schwartzkroin PA, Moshé SL (Hrsg) (2006) Models of seizures and epilepsy. Elsevier, Amsterdam

    Google Scholar 

  36. Potschka H, Fischer A, von Rüden E‑L, Hülsmeyer V, Baumgärtner W (2013) Canine epilepsy as a translational model? Epilepsia 54(4):571–579. https://doi.org/10.1111/epi.12138

    Article  CAS  PubMed  Google Scholar 

  37. Rajab E, Abdeen Z, Hassan Z, Alsaffar Y, Mandeel M, Al Shawaaf F et al (2014) Cognitive performance and convulsion risk after experimentally-induced febrile-seizures in rat. Int J Dev Neurosci 34:19–23. https://doi.org/10.1016/j.ijdevneu.2014.01.001

    Article  PubMed  Google Scholar 

  38. Rattka M, Brandt C, Löscher W (2013) The intrahippocampal kainate model of temporal lobe epilepsy revisited: Epileptogenesis, behavioral and cognitive alterations, pharmacological response, and hippoccampal damage in epileptic rats. Epilepsy Res 103(2):135–152. https://doi.org/10.1016/j.eplepsyres.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  39. Rosenblueth A, Wiener N (1945) The role of models in science. Philos Sci 12(4):316–321

    Article  Google Scholar 

  40. Schwob JE, Fuller T, Price JL, Olney JW (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: A histological study. Neuroscience 5(6):991–1014. https://doi.org/10.1016/0306-4522(80)90181-5

    Article  CAS  PubMed  Google Scholar 

  41. Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630

    PubMed  PubMed Central  Google Scholar 

  42. Sloviter RS (2005) The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol 328(2):143–153

    Article  Google Scholar 

  43. Sloviter RS, Bumanglag AV (2013) Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 69:3–15. https://doi.org/10.1016/j.neuropharm.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  44. Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS (2018) Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol 119(5):1818–1835. https://doi.org/10.1152/jn.00721.2017

    Article  CAS  PubMed  Google Scholar 

  45. Soeder BM, Gleissner U, Urbach H, Clusmann H, Elger CE, Vincent A, Bien CG (2009) Causes, presentation and outcome of lesional adult onset mediotemporal lobe epilepsy. J Neurol Neurosurg Psychiatry 80(8):894–899. https://doi.org/10.1136/jnnp.2008.165860

    Article  CAS  PubMed  Google Scholar 

  46. Tassi L, Meroni A, Deleo F, Villani F, Mai R, Lo Russo G et al (2009) Temporal lobe epilepsy: neuropathological and clinical correlations in 243 surgically treated patients. Epileptic Disord 11(4):281–292. https://doi.org/10.1684/epd.2009.0279

    Article  PubMed  Google Scholar 

  47. Thwaites CL (2005) Tetanus. Curr Anaesth Crit Care 16(1):50–57. https://doi.org/10.1016/j.cacc.2005.01.001

    Article  Google Scholar 

  48. Twele F, Bankstahl M, Klein S, Romermann K, Loscher W (2015) The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Neuropharmacology 95:234–242. https://doi.org/10.1016/j.neuropharm.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  49. van Vliet EA, Edelbroek PM, Gorter JA (2010) Improved seizure control by alternating therapy of levetiracetam and valproate in epileptic rats. Epilepsia 51(3):362–370. https://doi.org/10.1111/j.1528-1167.2009.02261.x

    Article  CAS  PubMed  Google Scholar 

  50. Wieser H‑G (2004) ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45(6):695–714. https://doi.org/10.1111/j.0013-9580.2004.09004.x

    Article  PubMed  Google Scholar 

  51. Wilhelm EA, Souza ACG, Gai BM, Chagas PM, Roehrs JA, Nogueira CW (2012) Hyperthermic seizures enhance responsiveness to pentylenetetrazole and induce cognitive dysfunction: protective effect of 3‑alkynyl selenophene. Proc Natl Sci Counc Repub China B 90(17):666–672. https://doi.org/10.1016/j.lfs.2012.03.005

    Article  CAS  Google Scholar 

  52. Will JL, Eckart MT, Rosenow F, Bauer S, Oertel WH, Schwarting RKW, Norwood BA (2013) Enhanced sequential reaction time task performance in a rat model of mesial temporal lobe epilepsy with classic hippocampal sclerosis. Behav Brain Res 247:65–72. https://doi.org/10.1016/j.bbr.2013.03.019

    Article  PubMed  Google Scholar 

  53. Williams PA, White AM, Clark S, Ferraro DJ, Swiercz W, Staley KJ, Dudek FE (2009) Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus. J Neurosci 29(7):2103–2112. https://doi.org/10.1523/JNEUROSCI.0980-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

Diese Arbeit wurde vom Land Hessen mit Mitteln aus dem LOEWE-Programm an das CePTER-Konsortium unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bauer.

Ethics declarations

Interessenkonflikt

S. Bauer gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, S. Tiermodelle der mesialen Temporallappenepilepsie. Z. Epileptol. 33, 62–69 (2020). https://doi.org/10.1007/s10309-019-00301-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-019-00301-y

Schlüsselwörter

Keywords

Navigation