Skip to main content

Advertisement

Log in

Interiktale Quellenlokalisation und Vorteile des High-density-EEG

Interictal source localization and advantages of high-density EEG

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Quellenlokalisation der Gehirnaktivität mittels EEG erlaubt die nichtinvasive Visualisierung der epileptischen Generatoren im anatomischen 3‑D-Raum. Zunächst hat sich die Lokalisierung der interiktalen epileptischen Entladungen mittels High-density-EEG (hdEEG) etabliert, bevor nun auch Techniken gesucht werden, um die iktalen Ereignisse zu lokalisieren.

Fragestellung

Hier fassen wir den aktuellen Stand der Literatur zur Lokalisierung der interiktalen Entladungen zusammen und geben eine Übersicht über die aktuellen Fragen.

Material und Methode

Wir besprechen die wichtigsten Arbeiten entlang der verschiedenen Parameter wie Erfassung der Entladung, Markierungszeitpunkt, Rolle des Kopfmodells und Elektrodenzahl und stellen die wichtigsten Studien mit Patientenkohorten dar.

Ergebnisse

In mehreren Studien mit großen Patientenkohorten wurde die Quellenlokalisierung von interiktalen epileptischen Entladungen durch hdEEG erfolgreich nachgewiesen. Wenn sie mit einem Kopfmodell, aufbauend auf dem eigenen MRT des Patienten, kombiniert wird, erreicht sie eine hohe Sensitivität (84 %) und Spezifität (88 %), die die anderen Bildgebungstechniken wie MRT, PET und SPECT übertreffen.

Schlussfolgerungen

EEG-Quellenlokalisation von interiktalen epileptischen Entladungen ist präzise und leistungsstark, und angesichts ihrer klinischen Relevanz sollte die EEG-Quellenlokalisierung einen festen Platz finden in der prächirurgischen Abklärung von Patienten mit pharmakorefraktärer Epilepsie neben den verbreiteten anderen Bildgebungstechniken.

Abstract

Background

Localization of the source of brain activity using an electroencephalograph (EEG) enables non-invasive visualization of the generators of epilepsy in an anatomical 3‑D space. Initially the localization of interictal epileptic discharges with high-density EEG (hdEEG) was established, before techniques are also now being looked for, in order to localize ictal events.

Objective

This article summarizes the current state of the literature on localization of interictal discharges and gives an overview of the current questions.

Material and methods

The most important articles on various parameters, such as documentation of the discharge, marking the time point, role of head models and number of electrodes are discussed and the most important studies with patient cohorts are presented.

Results

In several studies with large patient cohorts, the localization of the source of interictal epileptic discharges was successfully proven with hdEEG. When this is combined with a head model based on the magnetic resonance imaging (MRI) of the patient, a high sensitivity (84%) and specificity (88%) can be achieved, which is superior to the other imaging techniques, such as MRI, PET and SPECT.

Conclusion

The EEG source localization of interictal epileptic discharges is precise and powerful. In view of the clinical relevance EEG source localization should be an established component in the presurgical clarification of patients with drug-refractory epilepsy, in addition to the other widely used imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Akalin Acar Z, Makeig S (2013) Effects of forward model errors on EEG source localization. Brain Topogr 26:378–396

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alarcon G, Guy CN, Binnie CD et al (1994) Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. J Neurol Neurosurg Psychiatr 57:435–449

    Article  CAS  Google Scholar 

  3. Birot G, Spinelli L, Vulliemoz S et al (2014) Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin 5:77–83

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brodbeck V, Lascano AM, Spinelli L et al (2009) Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions. Clin Neurophysiol 120:679–685

    Article  PubMed  Google Scholar 

  5. Brodbeck V, Spinelli L, Lascano AM et al (2010) Electrical source imaging for presurgical focus localization in epilepsy patients with normal MRI. Epilepsia 51:583–591

    Article  PubMed  Google Scholar 

  6. Brodbeck V, Spinelli L, Lascano AM et al (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134:2887–2897

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci. https://doi.org/10.1155/2011/813870

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chowdhury RA, Lina JM, Kobayashi E et al (2013) MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches. PLoS ONE 8:e55969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Coito A, Genetti M, Pittau F et al (2016) Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: A high density EEG study. Epilepsia 57:402–411

    Article  PubMed  Google Scholar 

  10. Coito A, Plomp G, Genetti M et al (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56:207–217

    Article  PubMed  Google Scholar 

  11. Coito A, Plomp G, Genetti M, Abela A, Wiest R, Seeck M, Michel CM, Vulliemoz S (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56(2):207–217

    Article  PubMed  Google Scholar 

  12. Ebersole JS, Hawes-Ebersole S (2007) Clinical application of dipole models in the localization of epileptiform activity. J Clin Neurophysiol 24:120–129

    Article  PubMed  Google Scholar 

  13. Ebersole JS, Wade PB (1990) Spike voltage topography and equivalent dipole localization in complex partial epilepsy. Brain Topogr 3:21–34

    Article  PubMed  CAS  Google Scholar 

  14. Fiederer LDJ, Vorwerk J, Lucka F et al (2016) The role of blood vessels in high-resolution volume conductor head modeling of EEG. Neuroimage 128:193–208

    Article  PubMed  CAS  Google Scholar 

  15. Freeman WJ, Holmes MD, Burke BC et al (2003) Spatial spectra of scalp EEG and EMG from awake humans. Clin Neurophysiol 114:1053–1068

    Article  PubMed  Google Scholar 

  16. Fuchs M, Wagner M, Kastner J (2007) Development of volume conductor and source models to localize epileptic foci. J Clin Neurophysiol 24:101–119

    Article  PubMed  Google Scholar 

  17. Gavaret M, Badier JM, Marquis P et al (2004) Electric source imaging in temporal lobe epilepsy. J Clin Neurophysiol 21:267–282

    Article  PubMed  Google Scholar 

  18. Gavaret M, Badier JM, Marquis P et al (2006) Electric source imaging in frontal lobe epilepsy. J Clin Neurophysiol 23:358–370

    Article  PubMed  Google Scholar 

  19. Gavaret M, Guedj E, Koessler L et al (2010) Reading epilepsy from the dominant temporo-occipital region. J Neurol Neurosurg Psychiatr 81:710–715

    Article  Google Scholar 

  20. Gavaret M, Trebuchon A, Bartolomei F et al (2009) Source localization of scalp-EEG interictal spikes in posterior cortex epilepsies investigated by HR-EEG and SEEG. Epilepsia 50:276–289

    Article  PubMed  Google Scholar 

  21. Grech R, Cassar T, Muscat J et al (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grieve PG, Emerson RG, Isler JR et al (2004) Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram. Neuroimage 21:1260–1274

    Article  PubMed  Google Scholar 

  23. Grover P, Venkatesh P (2017) An Information-Theoretic View of EEG Sensing. Proc IEEE 105(2):367–384

    Article  Google Scholar 

  24. Guggisberg AG, Dalal SS, Zumer JM et al (2011) Localization of cortico-peripheral coherence with electroencephalography. Neuroimage 57:1348–1357

    Article  PubMed  Google Scholar 

  25. Hallez H, Vanrumste B, Grech R et al (2007) Review on solving the forward problem in EEG source analysis. J Neuroeng Rehabil 4:46

    Article  PubMed  PubMed Central  Google Scholar 

  26. He B, Lian J (2002) High-resolution spatio-temporal functional neuroimaging of brain activity. Crit Rev Biomed Eng 30:283–306

    Article  PubMed  CAS  Google Scholar 

  27. Hufnagel A, Dumpelmann M, Zentner J et al (2000) Clinical relevance of quantified intracranial interictal spike activity in presurgical evaluation of epilepsy. Epilepsia 41:467–478

    Article  PubMed  CAS  Google Scholar 

  28. James CE, Britz J, Vuilleumier P et al (2008) Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. Neuroimage 42:1597–1608

    Article  PubMed  Google Scholar 

  29. Kaiboriboon K, Luders HO, Hamaneh M et al (2012) EEG source imaging in epilepsy—practicalities and pitfalls. Nat Rev Neurol 8:498–507

    Article  PubMed  Google Scholar 

  30. Koessler L, Cecchin T, Colnat-Coulbois S et al (2015) Catching the invisible: mesial temporal source contribution to simultaneous EEG and SEEG recordings. Brain Topogr 28:5–20

    Article  PubMed  Google Scholar 

  31. Lantz G, Grave De Peralta R, Spinelli L et al (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114:63–69

    Article  PubMed  CAS  Google Scholar 

  32. Lantz G, Michel CM, Seeck M et al (2001) Space-oriented segmentation and 3‑dimensional source reconstruction of ictal EEG patterns. Clin Neurophysiol 112:688–697

    Article  PubMed  CAS  Google Scholar 

  33. Lantz G, Spinelli L, Seeck M et al (2003) Propagation of interictal epileptiform activity can lead to erroneous source localizations: A 128-channel EEG mapping study. J Clin Neurophysiol 20:311–319

    Article  PubMed  Google Scholar 

  34. Lascano AM, Lalive PH, Hardmeier M, Fuhr P, Seeck M (2017) Clinical evoked potentials in neurology: a review of techniques and indications. J Neurol Neurosurg Psychiatr 88(8):688–696

    Article  Google Scholar 

  35. Lascano AM, Grouiller F, Genetti M et al (2014) Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 74:517–526

    Article  PubMed  Google Scholar 

  36. Lascano AM, Perneger T, Vulliemoz S et al (2016) Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin Neurophysiol 127:150–155

    Article  PubMed  Google Scholar 

  37. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449

    Article  PubMed  CAS  Google Scholar 

  38. Luu P, Tucker DM, Englander R et al (2001) Localizing acute stroke-related EEG changes: assessing the effects of spatial undersampling. J Clin Neurophysiol 18:302–317

    Article  PubMed  CAS  Google Scholar 

  39. Maliia MD, Meritam P, Scherg M et al (2016) Epileptiform discharge propagation: Analyzing spikes from the onset to the peak. Clin Neurophysiol 127:2127–2133

    Article  PubMed  Google Scholar 

  40. Megevand P, Spinelli L, Genetti M et al (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatr 85:38–43

    Article  Google Scholar 

  41. Michel CM, He B (2017) EEG Mapping and Source Imaging. In: Oxford Medicine Online. Oxford University Press, Oxford

    Google Scholar 

  42. Michel CM, Lantz G, Spinelli L et al (2004) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21:71–83

    Article  PubMed  Google Scholar 

  43. Michel CM, Murray MM, Lantz G et al (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  44. Nahum L, Gabriel D, Spinelli L et al (2011) Rapid consolidation and the human hippocampus: intracranial recordings confirm surface EEG. Hippocampus 21:689–693

    Article  PubMed  Google Scholar 

  45. Nayak D, Valentin A, Alarcon G et al (2004) Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clin Neurophysiol 115:1423–1435

    Article  PubMed  Google Scholar 

  46. Noe K, Sulc V, Wong-Kisiel L et al (2013) Long-term outcomes after nonlesional extratemporal lobe epilepsy surgery. Jama Neurol 70:1003–1008

    Article  PubMed  PubMed Central  Google Scholar 

  47. Odabaee M, Freeman WJ, Colditz PB et al (2013) Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes. Neuroimage 68:229–235

    Article  PubMed  Google Scholar 

  48. Petrov Y, Nador J, Hughes C et al (2014) Ultra-dense EEG sampling results in two-fold increase of functional brain information. Neuroimage 90:140–145

    Article  PubMed  Google Scholar 

  49. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49:201–218

    Article  PubMed  Google Scholar 

  50. Ramantani G, Dumpelmann M, Koessler L et al (2014) Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources. Epilepsia 55:278–288

    Article  PubMed  Google Scholar 

  51. Rikir E, Koessler L, Gavaret M et al (2014) Electrical source imaging in cortical malformation-related epilepsy: a prospective EEG-SEEG concordance study. Epilepsia 55:918–932

    Article  PubMed  Google Scholar 

  52. Ryynanen O, Hyttinen J, Malmivuo J (2004) Study on the spatial resolution of EEG—effect of electrode density and measurement noise. In: Engineering in Medicine and Biology Society The 26th Annual International Conference of the IEEE, San Francisco, 05.9.2004. https://doi.org/10.1109/IEMBS.2004.1404226

    Chapter  Google Scholar 

  53. RyynäNen O, Hyttinen J, Malmivuo J (2005) Effect of skull resistivity and measurement noise on the spatial resolution of EEG. Int J Bioelectromagn 7:317–320

    Google Scholar 

  54. Scheler G, Fischer MJ, Genow A et al (2007) Spatial relationship of source localizations in patients with focal epilepsy: Comparison of MEG and EEG with a three spherical shells and a boundary element volume conductor model. Hum Brain Mapp 28:315–322

    Article  PubMed  Google Scholar 

  55. Seeck M, Koessler L, Bast T et al (2017) The standardized EEG electrode array of the IFCN. Clin Neurophysiol 128:2070–2077

    Article  PubMed  Google Scholar 

  56. Song J, Davey C, Poulsen C et al (2015) EEG source localization: Sensor density and head surface coverage. J Neurosci Methods 256:9–21

    Article  PubMed  Google Scholar 

  57. Sperli F, Spinelli L, Seeck M et al (2006) EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47:981–990

    Article  PubMed  Google Scholar 

  58. Spinelli L, Andino SG, Lantz G et al (2000) Electromagnetic inverse solutions in anatomically constrained spherical head models. Brain Topogr 13:115–125

    Article  PubMed  CAS  Google Scholar 

  59. Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical dynamics: estimates of EEG coherence. Ieee Trans Biomed Eng 45:814–826

    Article  PubMed  CAS  Google Scholar 

  60. Srinivasan R, Tucker DM, Murias M (1998) Estimating the spatial Nyquist of the human EEG. Behav Res Methods Instrum Comput 30:8–19

    Article  Google Scholar 

  61. Staljanssens W, Strobbe G, Holen RV et al (2017) Seizure onset zone localization from Ictal high-density EEG in refractory focal epilepsy. Brain Topogr 30:257–271

    Article  PubMed  Google Scholar 

  62. Strobbe G, Van Mierlo P, De Vos M et al (2014) Multiple sparse volumetric priors for distributed EEG source reconstruction. Neuroimage 100:715–724

    Article  PubMed  Google Scholar 

  63. Vorwerk J, Cho JH, Rampp S et al (2014) A guideline for head volume conductor modeling in EEG and MEG. Neuroimage 100:590–607

    Article  PubMed  Google Scholar 

  64. Wang G, Worrell G, Yang L et al (2011) Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin Neurophysiol 122:1098–1105

    Article  PubMed  Google Scholar 

  65. Yamazaki M, Tucker DM, Fujimoto A et al (2012) Comparison of dense array EEG with simultaneous intracranial EEG for interictal spike detection and localization. Epilepsy Res 98:166–173

    Article  PubMed  Google Scholar 

  66. Zumsteg D, Friedman A, Wennberg RA et al (2005) Source localization of mesial temporal interictal epileptiform discharges: correlation with intracranial foramen ovale electrode recordings. Clin Neurophysiol 116:2810–2818

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Gschwind.

Ethics declarations

Interessenkonflikt

M. Seeck hat Anteile an Epilog und wurde von Desitin und Philipps unterstützt. M. Gschwind gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gschwind, M., Seeck, M. Interiktale Quellenlokalisation und Vorteile des High-density-EEG. Z. Epileptol. 31, 185–191 (2018). https://doi.org/10.1007/s10309-018-0196-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-018-0196-8

Schlüsselwörter

Keywords

Navigation