Zeitschrift für Epileptologie

, Volume 30, Issue 3, pp 208–212 | Cite as

Neue histopathologische Entitäten in der Epilepsiechirurgie

Leitthema
  • 57 Downloads

Zusammenfassung

In der wissenschaftlichen Literatur zur Epilepsiechirurgie werden erstaunlich oft neue Erkrankungsentitäten beschrieben. Die Autoren gehen der Frage nach, ob es für diesen Trend hinreichend Gründe gibt. Schließlich kann eine lange Epilepsieerkrankung im Gehirnparenchym sekundäre Schädigungsmuster induzieren. Derartige reaktive Muster können sowohl durch invasives Monitoring ausgelöst werden als auch der zeitlebens bestehenden strukturellen und molekularen Plastizität des ZNS geschuldet sein. Besonders interessant erscheinen uns in diesem Zusammenhang die jüngst beschriebenen Veränderungen der Oligodendrozyten im subkortikalen Marklager. Während ein Anfallsursprung praktisch nie im Marklager generiert wird und oligodendrogliale Veränderungen für die Epileptogenese daher wenig wahrscheinlich sind, könnten elektrische Erregungskreisläufe im epileptischen Netzwerk einen funktionellen Stimulus für die Oligodendrogliogenese darstellen. Diese auch im MRT sichtbaren Veränderungen werden daher als Surrogat für eine neue klinisch pathologische Entität diskutiert. Eine andere hier vorzustellende neu beschriebene Entität mit vorzugsweise oligodendroglialer Differenzierung rekrutiert sich aus dem Bereich der Neoplasien.

Schlüsselwörter

Gehirn Anfälle Neuropathologie Oligodendrozyt Klassifikation 

New histopathological entities in epilepsy surgery

Abstract

The authors discuss the intriguing, although ambiguous observation of frequently reported new entities in the scientific literature addressing epilepsy surgery. One conceivable explanation for the broad spectrum of histological patterns is that of secondary reaction patterns of brain tissue due to prolonged epilepsy burden, with iatrogenic manipulation during invasive monitoring or molecular mechanisms of neuronal and/or glial plasticity as the most likely mechanisms; however, there is increasing awareness of oligodendroglial changes in the subcortical white matter, which deserves particular attention. Notwithstanding, the white matter has only a low ability to trigger seizures. On the other hand, the white matter harbors most of the epileptic networks and electrical stimulation has been shown to foster oligodendrogliogenesis in a rat animal model. Increased oligodendroglial cells in areas of epileptogenic activity can be detected by magnetic resonance imaging (MRI) and should therefore be considered as surrogate for a hitherto new clinicopathological entity. Another new entity with an oligodendroglial phenotype was recently described as new epilepsy-associated brain tumor.

Keywords

Brain Seizure Neuropathology Oligodendrocyte Classification 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Schurr und R. Coras geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Armstrong DD (1993) The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 52:433–443CrossRefPubMedGoogle Scholar
  2. 2.
    Bashir ZI, Alford S, Davies SN et al (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349:156–158CrossRefPubMedGoogle Scholar
  3. 3.
    Bien CG, Raabe AL, Schramm J et al (2013) Trends in presurgical evaluation and surgical treatment of epilepsy at one centre from 1988–2009. J Neurol Neurosurg Psychiatr 84:54–61CrossRefPubMedGoogle Scholar
  4. 4.
    Blumcke I, Aronica E, Becker A et al (2016) Low-grade epilepsy-associated neuroepithelial tumours – the 2016 WHO classification. Nat Rev Neurol 12:732–740CrossRefPubMedGoogle Scholar
  5. 5.
    Blumcke I, Giencke K, Wardelmann E et al (1999) The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol 97:481–490CrossRefPubMedGoogle Scholar
  6. 6.
    Blumcke I, Thom M, Aronica E et al (2011) The clinico-pathological spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174CrossRefPubMedGoogle Scholar
  7. 7.
    Blumcke I, Wiestler OD (2002) Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 61:575–584CrossRefPubMedGoogle Scholar
  8. 8.
    Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. In: Russel G, Marley E, Williams P (Hrsg) Maudsley monographs. Oxford University Press, London, S 1–158Google Scholar
  9. 9.
    Burger PC, Scheithauer BW, Vogel FS (2002) Surgical pathology of the nervous system and its coverings. Churchill Livingstone, New YorkGoogle Scholar
  10. 10.
    Hamilton BE, Nesbit GM (2009) MR imaging identification of oligodendroglial hyperplasia. AJNR Am J Neuroradiol 30:1412–1413CrossRefPubMedGoogle Scholar
  11. 11.
    Haug H, Kuhl S, Mecke E et al (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. J Hirnforsch 25:353–374PubMedGoogle Scholar
  12. 12.
    Kasper BS, Stefan H, Buchfelder M et al (1999) Temporal lobe microdysgenesis in epilepsy versus control brains. J Neuropathol Exp Neurol 58:22–28CrossRefPubMedGoogle Scholar
  13. 13.
    Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62:S2–S8CrossRefPubMedGoogle Scholar
  14. 14.
    Pascual-Leone A (2001) The brain that plays music and is changed by it. Ann N Y Acad Sci 930:315–329CrossRefPubMedGoogle Scholar
  15. 15.
    Schurr J, Coras R, Rossler K et al (2016) Mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy: a new clinico-pathological entity. Brain Pathol 27(1):26–35. doi: 10.1111/bpa.12347 CrossRefPubMedGoogle Scholar
  16. 16.
    Sakuma S, Halliday WC, Nomura R et al (2014) Increased population of oligodendroglia-like cells in pediatric intractable epilepsy. Neurosci Lett 556:188–193Google Scholar
  17. 17.
    Stefanits H, Czech T, Pataraia E et al (2012) Prominent oligodendroglial response in surgical specimens of patients with temporal lobe epilepsy. Clin Neuropathol 31:409–417CrossRefPubMedGoogle Scholar
  18. 18.
    Steinhauser C, Boison D (2012) Epilepsy: crucial role for astrocytes. Glia 60:1191CrossRefPubMedGoogle Scholar
  19. 19.
    Stevens B, Porta S, Haak LL et al (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thom M, Toma A, An S et al (2011) One hundred and one dysembryoplastic neuroepithelial tumors: an adult epilepsy series with immunohistochemical, molecular genetic, and clinical correlations and a review of the literature. J Neuropathol Exp Neurol 70:859–878CrossRefPubMedGoogle Scholar
  21. 21.
    Wolf HK, Wiestler OD (1993) Surgical pathology of chronic epileptic seizure disorders. Brain Pathol 3:371–380CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Neuropathologisches InstitutUniversitätskliniken ErlangenErlangenDeutschland
  2. 2.Abteilung für Klinische ToxikologieGiftnotruf MünchenMünchenDeutschland

Personalised recommendations