Skip to main content
Log in

Ablation und Epileptogenizität – Zur Beziehung von Läsion und Funktion

Ablation and epileptogenicity – the relationship between lesion and function

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund und Ziel der Arbeit

In dem folgenden Artikel wird der grundsätzliche Zusammenhang bezüglich der epileptogenen Läsion einerseits und den Ergebnissen elektrophysiologischer funktioneller Untersuchungsmethoden in der prächirurgischen Diagnostik anderseits unter besonderer Berücksichtigung von ablativen epilepsiechirurgischen Methoden zusammengefasst.

Material und Methoden

Eine ausgewählte Literatursammlung wird diskutiert.

Ergebnisse

Aus der Sicht der Autoren ist eine Läsionektomie alleine kein Garant für ein erfolgreiches Ergebnis nach einem epilepsiechirurgischen Eingriff: Verschiedene epileptogene Läsionen führen zu verschiedenen epileptogenen Netzwerken, die wiederum eines differenziellen Gebrauchs von nichtinvasiven und invasiven funktionellen Untersuchungsmethoden, wie z. B. Quellenlokalisation, intraoperative Elektrokortikogramme oder Tiefenelektroden, bedürfen.

Schlussfolgerungen

Bei jedem individuellen Patienten sollte die Epileptogenizität einer Läsion unter Berücksichtigung des Läsionstyps, der Lokalisation der Läsion und deren Verhältnis zum eloquenten Kortex bestimmt werden. Die durch die MRT definierten Läsionsgrenzen sind nicht immer ausreichend, um ein gutes Langzeitergebnis bezüglich Anfangskontrolle zu bekommen. Prospektive, kontrollierte und – idealerweise – randomisierte Studien sind notwendig, um ein optimales, rational begründetes, diagnostisches und daraus folgend therapeutisches Vorgehen für die neu aufkommenden minimalinvasiven, ablativen epilepsiechirurgischen Methoden verwenden zu können.

Abstract

Background and objective

Description of the relationship between epileptogenic lesions and results from electrophysiological and functional findings during the presurgical work-up. Special consideration is given to ablative surgical techniques.

Material and methods

Synopsis of published results concerning ablation and electrophysiology.

Results

Lesionectomies alone might not lead to successful surgical results. Different lesion types lead to different epileptogenic networks, which require a differential use of non-invasive or invasive functional studies, such as source localization, intraoperative electrocorticogram and depth electrode recordings.

Conclusion

Epileptogenicity of lesions in pharmacoresistant epilepsy have to be defined individually with regard to lesion type, location and relation to eloquent cortex. Lesion borders defined by magnetic resonance imaging (MRI) are not always sufficient to achieve postoperative long-term seizure control. Prospective randomized controlled studies are necessary to establish optimized rational diagnostics and subsequent therapeutic approaches for new upcoming minimally invasive ablative surgical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aronica E, Redeker S, Boer K et al (2007) Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Epilepsy Res 74:33–44. doi:10.1016/j.eplepsyres.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  2. Aubert S, Wendling F, Regis J et al (2009) Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain 132:3072–3086. doi:10.1093/brain/awp242

    Article  PubMed  Google Scholar 

  3. Avanzini (2009) Oral presentation. Erlanger Epilepsy Symposium.

    Google Scholar 

  4. Awad IA, Rosenfeld J, Ahl J et al (1991) Intractable epilepsy and structural lesions of the brain: mapping, resection strategies, and seizure outcome. Epilepsia 32:179–186

    Article  CAS  PubMed  Google Scholar 

  5. Bartolomei F, Cosandier-Rimele D, McGonigal A et al (2010) From mesial temporal lobe to temporoperisylvian seizures: a quantified study of temporal lobe seizure networks. Epilepsia 51:2147–2158. doi:10.1111/j.1528-1167.2010.02690.x

    Article  PubMed  Google Scholar 

  6. Bast DT, Huppertz H‑J, Bilic S et al (2007) Iktale Magnetoenzephalographie (MEG) und modernste multimodale Diagnostik führen zur Operationsindikation nach 40 Jahren pharmakorefraktärem Verlauf einer scheinbar kryptogenen Frontallappenepilepsie. Z Epileptol 20:41–48. doi:10.1007/s10309-007-0226-4

    Article  Google Scholar 

  7. Bast T, Oezkan O, Rona S et al (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45:621–631. doi:10.1111/j.0013-9580.2004.56503.x

    Article  PubMed  Google Scholar 

  8. Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (Wien) 142:1–15

    Article  CAS  Google Scholar 

  9. Blümcke I (2012) Epilepsy-associated brain tumors. Handb Clin Neurol 108:559–568. doi:10.1016/B978-0-444-52899-5.00015-0

    Article  PubMed  Google Scholar 

  10. Boerwinkle VL, Wilfong AA, Curry DJ (2016) Resting-state functional connectivity by independent component analysis-based markers corresponds to areas of initial seizure propagation established by prior modalities from the Hypothalamus. Brain Connect 6:642–651. doi:10.1089/brain.2015.0404

    Article  PubMed Central  Google Scholar 

  11. Britton JW, Cascino GD, Sharbrough FW, Kelly PJ (1994) Low-grade glial neoplasms and intractable partial epilepsy: efficacy of surgical treatment. Epilepsia 35:1130–1135. doi:10.1111/j.1528-1157.1994.tb01778.x

    Article  CAS  PubMed  Google Scholar 

  12. Cascino GD, Kelly PJ, Sharbrough FW et al (1992) Long-term follow-up of stereotactic lesionectomy in partial epilepsy: predictive factors and electroencephalographic results. Epilepsia 33:639–644

    Article  CAS  PubMed  Google Scholar 

  13. Chez M et al (2012). Abstract, AES San Diego

  14. Clarke DF, Tindall K, Lee M, Patel B (2014) Bilateral occipital dysplasia, seizure identification, and ablation: a novel surgical technique. Epileptic Disord 16:238–243. doi:10.1684/epd.2014.0658

    PubMed  Google Scholar 

  15. Cossu M, Fuschillo D, Cardinale F et al (2014) Stereo-EEG-guided radio-frequency thermocoagulations of epileptogenic grey-matter nodular heterotopy. J Neurol Neurosurg Psychiatry 85:611–617. doi:10.1136/jnnp-2013-305514

    Article  PubMed  Google Scholar 

  16. Van Dellen E, Douw L, Hillebrand A et al (2014) Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. Neuroimage 86:354–363. doi:10.1016/j.neuroimage.2013.10.010

    Article  PubMed  Google Scholar 

  17. Devine IM, Burrell CJ, Shih JJ (2016) Curative laser thermoablation of epilepsy secondary to bottom-of-sulcus dysplasia near eloquent cortex. Seizure 34:35–37. doi:10.1016/j.seizure.2015.11.006

    Article  PubMed  Google Scholar 

  18. Dredla BK, Lucas JA, Wharen RE, Tatum WO (2016) Neurocognitive outcome following stereotactic laser ablation in two patients with MRI−/PET + mTLE. Epilepsy Behav 56:44–47. doi:10.1016/j.yebeh.2015.12.047

    Article  PubMed  Google Scholar 

  19. Dubeau F, Tyvaert L (2010) Understanding the epileptogenicity of lesions: a correlation between intracranial EEG and EEG/fMRI. Epilepsia 51(Suppl 1):54–58. doi:10.1111/j.1528-1167.2009.02447.x

    Article  PubMed  Google Scholar 

  20. Dubois LG, Campanati L, Righy C et al (2014) Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci 8:418. doi:10.3389/fncel.2014.00418

    Article  PubMed  PubMed Central  Google Scholar 

  21. Englot DJ, Hinkley LB, Kort NS et al (2015) Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain J Neurol 138:2249–2262. doi:10.1093/brain/awv130

    Article  Google Scholar 

  22. Esquenazi Y, Kalamangalam GP, Slater JD et al (2014) Stereotactic laser ablation of epileptogenic periventricular nodular heterotopia. Epilepsy Res 108:547–554. doi:10.1016/j.eplepsyres.2014.01.009

    Article  PubMed  Google Scholar 

  23. ILAE Pediatric Epilepsy Surgery Survey Taskforce, Harvey AS, Cross JH, Shinnar S et al (2008) Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 49:146–155. doi:10.1111/j.1528-1167.2007.01421.x

    Article  Google Scholar 

  24. Hauptman JS, Mathern GW (2012) Vagal nerve stimulation for pharmacoresistant epilepsy in children. Surg Neurol Int 3:S269–S274. doi:10.4103/2152-7806.103017

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jacobs KM, Gutnick MJ, Prince DA (1996) Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 6:514–523

    Article  CAS  PubMed  Google Scholar 

  26. Kahane P, Spencer SS (2012) Invasive evaluation. Handb Clin Neurol 108:867–879. doi:10.1016/B978-0-444-52899-5.00033-2

    Article  PubMed  Google Scholar 

  27. Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57:892–907. doi:10.1016/j.neuroimage.2011.05.025

    Article  PubMed  Google Scholar 

  28. Kang JY, Wu C, Tracy J et al (2016) Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia 57:325–334. doi:10.1111/epi.13284

    Article  PubMed  Google Scholar 

  29. Kim D, Joo EY, Seo DW et al (2016) Accuracy of MEG in localizing irritative zone and seizure onset zone: quantitative comparison between MEG and intracranial EEG. Epilepsy Res. doi:10.1016/j.eplepsyres.2016.08.013

    Google Scholar 

  30. Kirkpatrick PJ, Honavar M, Janota I, Polkey CE (1993) Control of temporal lobe epilepsy following en bloc resection of low-grade tumors. J Neurosurg 78:19–25. doi:10.3171/jns.1993.78.1.0019

    Article  CAS  PubMed  Google Scholar 

  31. Lagarde S, Bonini F, McGonigal A et al (2016) Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes. Epilepsia 57:1426. doi:10.1111/epi.13464

    Article  PubMed  Google Scholar 

  32. Lewis EC, Weil AG, Duchowny M et al (2015) MR-guided laser interstitial thermal therapy for pediatric drug-resistant lesional epilepsy. Epilepsia 56:1590–1598. doi:10.1111/epi.13106

    Article  PubMed  Google Scholar 

  33. Li LM, Dubeau F, Andermann F et al (1997) Periventricular nodular heterotopia and intractable temporal lobe epilepsy: poor outcome after temporal lobe resection. Ann Neurol 41:662–668. doi:10.1002/ana.410410516

    Article  CAS  PubMed  Google Scholar 

  34. Lüders HO, Burgess R, Noachtar S (1993) Expanding the international classification of seizures to provide localization information. Neurology 43:1650–1655

    Article  PubMed  Google Scholar 

  35. Luedke MW, Pietak MR, Serafini S et al (2016) Intraoperative EcoG during MRI-guided laser-interstitial thermal therapy for intractable epilepsy. J Clin Neurophysiol 33:e28–e30. doi:10.1097/WNP.0000000000000299

    Article  PubMed  Google Scholar 

  36. Maschio M, Sperati F, Dinapoli L et al (2014) Weight of epilepsy in brain tumor patients. J Neurooncol 118:385–393. doi:10.1007/s11060-014-1449-7

    Article  PubMed  Google Scholar 

  37. Mattia D, Olivier A, Avoli M (1995) Seizure-like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 45:1391–1395

    Article  CAS  PubMed  Google Scholar 

  38. Morioka T, Nishio S, Ishibashi H et al (1999) Intrinsic epileptogenicity of focal cortical dysplasia as revealed by magnetoencephalography and electrocorticography. Epilepsy Res 33:177–187

    Article  CAS  PubMed  Google Scholar 

  39. Mu J, Rampp S, Carrette E et al (2014) Clinical relevance of source location in frontal lobe epilepsy and prediction of postoperative long-term outcome. Seizure 23:553–559. doi:10.1016/j.seizure.2014.04.006

    Article  PubMed  Google Scholar 

  40. Nakajima M, Widjaja E, Baba S et al (2016) Remote MEG dipoles in focal cortical dysplasia at bottom of sulcus. Epilepsia 57:1169–1178. doi:10.1111/epi.13399

    Article  PubMed  Google Scholar 

  41. Nolan MA, Sakuta R, Chuang N et al (2004) Dysembryoplastic neuroepithelial tumors in childhood: long-term outcome and prognostic features. Neurology 62:2270–2276

    Article  CAS  PubMed  Google Scholar 

  42. Ostrom Q, Cohen ML, Ondracek A et al (2013) Gene markers in brain tumors: what the epileptologist should know. Epilepsia 54(Suppl 9):25–29. doi:10.1111/epi.12439

    Article  CAS  PubMed  Google Scholar 

  43. Palmini A, Gambardella A, Andermann F et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37:476–487. doi:10.1002/ana.410370410

    Article  CAS  PubMed  Google Scholar 

  44. Rosenow F, Lüders HO, Dinner DS et al (1998) Histopathological correlates of epileptogenicity as expressed by electrocorticographic spiking and seizure frequency. Epilepsia 39:850–856

    Article  CAS  PubMed  Google Scholar 

  45. Scherer C, Schuele S, Minotti L et al (2005) Intrinsic epileptogenicity of an isolated periventricular nodular heterotopia. Neurology 65:495–496. doi:10.1212/01.wnl.0000172350.25380.c7

    Article  CAS  PubMed  Google Scholar 

  46. Schmitt FC, Voges J, Buentjen L et al (2011) Radiofrequency lesioning for epileptogenic periventricular nodular heterotopia: a rational approach. Epilepsia 52:e101–e105. doi:10.1111/j.1528-1167.2011.03116.x

    Article  PubMed  Google Scholar 

  47. Schneider F, Wang IZ, Alexopoulos AV et al (2013) Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG. Epilepsia 54:359–369. doi:10.1111/epi.12004

    Article  PubMed  Google Scholar 

  48. Schwartzkroin PA, Wenzel HJ (2012) Are developmental dysplastic lesions epileptogenic? Epilepsia 53:35–44. doi:10.1111/j.1528-1167.2012.03473.x

    Article  PubMed  Google Scholar 

  49. Seeck M (2003) Surgical treatment of tumoral temporal-lobe epilepsy. Lancet Neurol 2:722–723

    Article  PubMed  Google Scholar 

  50. Sisodiya SM (2000) Surgery for malformations of cortical development causing epilepsy. Brain 123:1075–1091. doi:10.1093/brain/123.6.1075

    Article  PubMed  Google Scholar 

  51. Stefan H, Hopfengärtner R, Kreiselmeyer G et al (2008) Interictal triple ECoG characteristics of temporal lobe epilepsies: an intraoperative ECoG analysis correlated with surgical outcome. Clin Neurophysiol 119:642–652. doi:10.1016/j.clinph.2007.11.046

    Article  CAS  PubMed  Google Scholar 

  52. Stefan H, Lopes da Silva FH (2013) Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol 4:8. doi:10.3389/fneur.2013.00008

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stefan H, Nimsky C, Scheler G et al (2007) Periventricular nodular heterotopia: a challenge for epilepsy surgery. Seizure 16:81–86. doi:10.1016/j.seizure.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Stepanenko AY, Arkhipova NA, Pronin IN et al (2013) Partial disconnection procedure in a patient with bilateral lesions (case report). Epilepsy Behav Case Rep 1:45–49. doi:10.1016/j.ebcr.2013.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thompson SA, Kalamangalam GP, Tandon N (2016) Intracranial evaluation and laser ablation for epilepsy with periventricular nodular heterotopia. Seizure. doi:10.1016/j.seizure.2016.06.019

    Google Scholar 

  56. De Tisi J, Bell GS, Peacock JL et al (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378:1388–1395. doi:10.1016/S0140-6736(11)60890-8

    Article  PubMed  Google Scholar 

  57. Tran TA, Spencer SS, Javidan M et al (1997) Significance of spikes recorded on intraoperative electrocorticography in patients with brain tumor and epilepsy. Epilepsia 38:1132–1139

    Article  CAS  PubMed  Google Scholar 

  58. Vadera S, Jehi L, Burgess RC et al (2013) Correlation between magnetoencephalography-based „clusterectomy“ and postoperative seizure freedom. Neurosurg Focus 34:E9. doi:10.3171/2013.4.FOCUS1357

    Article  PubMed  Google Scholar 

  59. Varotto G, Tassi L, Franceschetti S et al (2012) Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. Neuroimage 61:591–598. doi:10.1016/j.neuroimage.2012.03.090

    Article  PubMed  Google Scholar 

  60. Wagner J, Elger CE, Urbach H, Bien CG (2009) Electric stimulation of periventricular heterotopia: participation in higher cerebral functions. Epilepsy Behav 14:425–428. doi:10.1016/j.yebeh.2008.11.006

    Article  PubMed  Google Scholar 

  61. Wennberg R, Quesney LF, Lozano A et al (1999) Role of electrocorticography at surgery for lesion-related frontal lobe epilepsy. Can J Neurol Sci J Can Sci Neurol 26:33–39

    Article  CAS  Google Scholar 

  62. Widdess-Walsh P, Jeha L, Nair D et al (2007) Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology 69:660–667. doi:10.1212/01.wnl.0000267427.91987.21

    Article  CAS  PubMed  Google Scholar 

  63. Widjaja E, Otsubo H, Raybaud C et al (2008) Characteristics of MEG and MRI between Taylor’s focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res 82:147–155. doi:10.1016/j.eplepsyres.2008.07.013

    Article  PubMed  Google Scholar 

  64. Wilenius J, Medvedovsky M, Gaily E et al (2013) Interictal MEG reveals focal cortical dysplasias: special focus on patients with no visible MRI lesions. Epilepsy Res 105:337–348. doi:10.1016/j.eplepsyres.2013.02.023

    Article  PubMed  Google Scholar 

Download references

Danksagung

Frau C. Saint-Lot und Herr cand. med. A. Ilse halfen bei Fertigstellung des Manuskripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Stefan.

Ethics declarations

Interessenkonflikt

H. Stefan hat DFG-Fördermittel erhalten. Zudem bekam er Reisevergütungen von Elekta Inc. und Medtronic Inc. F.C. Schmitt erhielt Zuwendungen für Reisekosten und Vortragsvorbereitungen von Medtronic Inc.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefan, H., Schmitt, F.C. Ablation und Epileptogenizität – Zur Beziehung von Läsion und Funktion. Z. Epileptol. 30, 129–137 (2017). https://doi.org/10.1007/s10309-016-0097-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-016-0097-7

Schlüsselwörter

Keywords

Navigation