Skip to main content

Advertisement

Log in

Aktuelle Prächirurgische Diagnostik

Presurgical evaluation – state of the art

  • Übersichten
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Für Patienten mit pharmakorefraktärer Epilepsie bietet die Epilepsiechirurgie eine Chance auf Heilung. Die Identifizierung der epileptogenen Zone ist hierfür eine Voraussetzung. Die prächirurgische Diagnostik beginnt mit der Anamnese des Patienten und der Angehörigen, um das Spektrum der Anfälle abschätzen zu können. Die neuropsychologische Untersuchung gibt Auskunft über Defizite, v. a. der kognitiven Leistungen, die einerseits bei der Lateralisierung helfen, andererseits eventuelle postoperative Defizite vorhersagen lassen. Die MR-Bildgebung, wenn möglich im 3T-Scanner, sollte dünnschichtige Aufnahmen in 3D-T1-Wichtung und 3D-FLAIR sowie dünnschichtige 2D-Aufnahmen umfassen, die je nach Gebiet (temporale vs. extratemporale Epilepsie) anguliert sind. Im Video-EEG-Monitoring sollten alle vorliegenden Anfälle aufgezeichnet werden. Hilfreich sind enge Montagen im fraglichen Areal. Auf technische Aspekte wie komplette Erfassung des Patienten und gute Ausleuchtung ist zu achten. Ein invasives Video-EEG-Monitoring mit Tiefenelektroden oder subduralen Elektroden ist indiziert, wenn die Oberflächenableitung keine zur Läsion passende oder nicht gut fokussierte Anfallsmuster zeigt. Hierfür ist eine klare Hypothese erforderlich, da bei invasiver Ableitung ein „Tunnelblick“ durch die implantierten Elektroden besteht. Die FDG-PET ist eine wertvolle Ergänzung, v. a. bei Patienten mit unauffälligem MRT. Ein hypometaboles Areal entspricht häufig der Anfallsursprungszone. Dies trifft auch auf das SPECT mit Nachweis einer fokalen iktalen Hyperperfusion zu. Für eine prächirurgische Diagnostik eignen sich nur Patienten, die sich prinzipiell auch operieren lassen und die kooperationsfähig sind.

Abstract

Epilepsy surgery offers a remedy for patients with pharmacorefractory epilepsy. The identification of the epileptogenic zone is a prerequisite. Presurgical evaluation begins with the present and past medical history to elicit all potential seizures and semiologic features. The neuropsychological evaluation shows the deficits, especially of the higher cognitive functions, that may help in lateralising of the epileptogenic zone and also in predicting putative postoperative deficits. MR-imaging with 3D-T1-weighted and 3D-FLAIR sequences, as well as 2D images in thin slices and aligned with either the hippocampus or the AC-PC-line (temporal vs. extratemporal epilepsy), are helpful. During telemetry all potential seizure types should be recorded. Montages with narrow spaced electrodes over areas that might harbour the seizure onset zone are helpful. Patients should be clearly visible to the camera at all times and the scene illuminated adequately. Invasive recording with depth electrodes or subdural grids or strips is indicated if surface electrodes show no seizure pattern, seizure pattern does not match other tests, or only non-localising seizure patterns are detected. Invasive monitoring needs a clear hypothesis since its field of view is restricted. FDG-PET is useful in MR-negative patients (i. e. non-lesional) since the area of hypometabolism has a high sensitivity and specificity for the seizure onset zone. SPECT, especially when interictal and ictal recordings are subtracted (SISCOM), can elicit the area of ictal hyperperfusion that corresponds well with the seizure onset zone. Only patients who in principle are willing to undergo resective surgery and who can cooperate are good candidates for presurgical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Behrens E, Schramm J, Zentner J, König R (1997) Surgical and neurological complications in a series of 708 epilepsy surgery procedures. Neurosurgery 41:1–9 (discussion 9–10)

    Article  CAS  PubMed  Google Scholar 

  2. Binder JR, Swanson SJ, Hammeke TA et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    Article  CAS  PubMed  Google Scholar 

  3. Brückner K (2012) Standard der neuropsychologischen Testung in der prächirurgischen Epilepsiediagnostik. Stellungnahme der neuropsychologischen DGfE-Kommission. Z Epileptol 25:259–263

    Article  Google Scholar 

  4. Cambier DM, Cascino GD, So EL, Marsh WR (2001) Video-EEG monitoring in patients with hippocampal atrophy. Acta Neurol Scand 103:231–237

    Article  CAS  PubMed  Google Scholar 

  5. Chiron C (2013) SPECT (single photon emission computed tomography) in pediatrics. Handb Clin Neurol 111:759–765. doi:10.1016/B978-0-444-52891-9.00078-6

    Article  PubMed  Google Scholar 

  6. Chung MY, Walczak TS, Lewis DV et al (1991) Temporal lobectomy and independent bitemporal interictal activity: what degree of lateralization is sufficient? Epilepsia 32:195–201

    Article  CAS  PubMed  Google Scholar 

  7. Cossu M, Cardinale F, Castana L et al (2005) Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery 57:706–718 (discussion 706–718)

    Article  PubMed  Google Scholar 

  8. Drzezga A, Arnold S, Minoshima S et al (1999) 18 F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med Off Publ Soc Nucl Med 40:737–746

    CAS  Google Scholar 

  9. Dümpelmann M, Jacobs J, Schulze-Bonhage A (2015) Temporal and spatial characteristics of high frequency oscillations as a new biomarker in epilepsy. Epilepsia 56:197–206. doi:10.1111/epi.12844

    Article  PubMed  Google Scholar 

  10. Gilliam F, Bowling S, Bilir E et al (1997) Association of combined MRI, interictal EEG, and ictal EEG results with outcome and pathology after temporal lobectomy. Epilepsia 38:1315–1320

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs J, LeVan P, Chander R et al (2008) Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49:1893–1907. doi:10.1111/j.1528-1167.2008.01656.x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Janszky J, Fogarasi A, Jokeit H, Ebner A (2001) Lateralizing value of unilateral motor and somatosensory manifestations in frontal lobe seizures. Epilepsy Res 43:125–133

    Article  CAS  PubMed  Google Scholar 

  13. Janszky J, Fogarasi A, Magalova V et al (2006) Unilateral hand automatisms in temporal lobe epilepsy. Seizure 15:393–396. doi:10.1016/j.seizure.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Jung WY, Pacia SV, Devinsky R (1999) Neocortical temporal lobe epilepsy: intracranial EEG features and surgical outcome. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 16:419–425

    CAS  Google Scholar 

  15. Katariwala NM, Bakay RA, Pennell PB et al (2001) Remission of intractable partial epilepsy following implantation of intracranial electrodes. Neurology 57:1505–1507

    Article  CAS  PubMed  Google Scholar 

  16. Kwan P, Arzimanoglou A, Berg AT et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia 51:1069–1077. doi:10.1111/j.1528-1167.2009.02397.x

    Article  CAS  PubMed  Google Scholar 

  17. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319. doi:10.1056/NEJM200002033420503

    Article  CAS  PubMed  Google Scholar 

  18. Lee SA, Spencer DD, Spencer SS (2000) Intracranial EEG seizure-onset patterns in neocortical epilepsy. Epilepsia 41:297–307

    Article  CAS  PubMed  Google Scholar 

  19. Lüders HO, Awad IG (1992) Conceptual considerations. In: Epilepsy Surg. Raven, New York, S 51–62

    Google Scholar 

  20. Meckes-Ferber S, Roten A, Kilpatrick C, O’Brien TJ (2004) EEG dipole source localisation of interictal spikes acquired during routine clinical video-EEG monitoring. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 115:2738–2743. doi:10.1016/j.clinph.2004.06.023

    Article  Google Scholar 

  21. Morris HH, Lüders H, Lesser RP et al (1986) The value of closely spaced scalp electrodes in the localization of epileptiform foci: a study of 26 patients with complex partial seizures. Electroencephalogr Clin Neurophysiol 63:107–111

    Article  PubMed  Google Scholar 

  22. Newberg AB, Alavi A, Berlin J et al (2000) Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures. J Nucl Med Off Publ Soc Nucl Med 41:1964–1968

    CAS  Google Scholar 

  23. O’Brien TJ, Newton MR, Cook MJ et al (1997) Hippocampal atrophy is not a major determinant of regional hypometabolism in temporal lobe epilepsy. Epilepsia 38:74–80

    Article  PubMed  Google Scholar 

  24. Pacia SV, Jung WJ, Devinsky O (1998) Localization of mesial temporal lobe seizures with sphenoidal electrodes. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 15:256–261

    CAS  Google Scholar 

  25. Picot M‑C, Baldy-Moulinier M, Daurès J‑P et al (2008) The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia 49:1230–1238. doi:10.1111/j.1528-1167.2008.01579.x

    Article  PubMed  Google Scholar 

  26. Rodin E, Constantino T, Bigelow J (2014) Interictal infraslow activity in patients with epilepsy. Clin Neurophysiol 125:919–929. doi:10.1016/j.clinph.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  27. Rosenow F, Hamer HM, Knake S et al (2001) Lateralizing and localizing signs and symptoms of epileptic seizures: significance and application in clinical practice. Nervenarzt 72:743–749

    Article  CAS  PubMed  Google Scholar 

  28. Urbach H, Mast H, Egger K, Mader I (2015) Presurgical MR imaging in epilepsy. Clin Neuroradiol 25(Suppl 2):151–155. doi:10.1007/s00062-015-0387-x

    Article  PubMed  Google Scholar 

  29. Vera P, Kaminska A, Cieuta C et al (1999) Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children. J Nucl Med 40:786–792

    CAS  PubMed  Google Scholar 

  30. Wellmer J, Quesada CM, Rothe L et al (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54:1977–1987. doi:10.1111/epi.12375

    Article  PubMed  Google Scholar 

  31. Woermann FG, Jokeit H, Luerding R et al (2003) Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Leonhardt.

Ethics declarations

Interessenkonflikt

G. Leonhardt gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonhardt, G. Aktuelle Prächirurgische Diagnostik. Z. Epileptol. 29, 106–114 (2016). https://doi.org/10.1007/s10309-016-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-016-0063-4

Schlüsselwörter

Keywords

Navigation