Skip to main content
Log in

Bewusstseinsstörungen während epileptischer Anfälle

Disturbances of consciousness during epileptic seizures

  • Übersichten
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Jeder Anfall verändert das Bewusstsein, sei es quantitativ (Wachheit) oder qualitativ (Inhalte). Absencen und fokale komplexe Anfälle sowie deren Statusformen sind durch Bewusstseinsstörungen mit Reaktions- und Erinnerungslosigkeit gekennzeichnet. Aufgrund von Befunden simultaner Untersuchungen durch Elektroenzephalographie (EEG) und funktioneller Magnetresonanztomographie wurde eine kausale Funktionsstörung der Wecksysteme angenommen. Klinische und EEG-Untersuchungen hingegen favorisieren eine rein kortikale Ausbreitung der inhibitorischen Komponente des Anfallsgeschehens. Ausgedehnte kortikale Defizitsymptome im „unresponsive wakefullness syndrome“ oder im minimal-bewussten Zustand gehen einher mit einer kompensatorischen Überaktivität der Wecksysteme. Die Befunde bei Anfällen könnten analog erklärt werden. Die Propagation des Anfalls mündet in einer diffusen kortikalen Inhibition (Bewusstseinsstörung) und tiefe Strukturen reagieren sekundär mit einem Weckversuch. Im Grand mal hingegen sind die Patienten komatös, eine direkte Rolle der Wecksysteme scheint wahrscheinlich. Bewusstseinsstörungen dienen als Kriterium für die Klassifikation von Anfällen. Die Überbetonung dieses Kriteriums geht mit einem Informationsverlust einher. Ein einfaches Sammeln von verifizierbaren Symptomen kann davor schützen.

Abstract

Every epileptic seizure changes consciousness in terms of wakefulness or the contents of consciousness. Absence and focal complex seizures are characterized by a loss of both reaction and memory. The results of simultaneous electroencephalography (EEG)/functional magnetic resonance imaging studies suggest a pivotal role of the arousal systems. Clinical and EEG observations, however, stress a purely cortical propagation of the inhibitory components of seizure activities. Unresponsive wakefulness syndrome or minimally conscious state is characterized by severe cortical deficits accompanied by a compensatory over-activation of the arousal systems. The sequence of events in seizures might be explained in a similar way. Diffuse cortical inhibition results in loss of reaction and memory and leads to secondary activation of the arousal systems. In generalized tonic–clonic seizures, patients are truly comatose, probably due to a causal involvement of the deep structures. Seizures are classified according to disturbances of consciousness; however, classifications based solely on this criterion neglect important details. Therefore, a simple collection of verifiable symptoms can avoid loss of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aguglia U, Gambardella A, Le Piane E et al (1999) Idiopathic generalized epilepsies with versive or circling seizures. Acta Neurol Scand 99:219–224

    CAS  PubMed  Google Scholar 

  2. Amor F, Baillet S, Navarro V et al (2009) Cortical local and long-range synchronization interplay in human absence seizure initiation. Neuroimage 45:950–962

    PubMed  Google Scholar 

  3. Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI „deactivation“ of posterior cingulate during generalized spike and wave. NeuroImage 20:1915–1922

    PubMed  Google Scholar 

  4. Arthuis M, Valton L, Régis J et al (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132:2091–2101

    PubMed  Google Scholar 

  5. Bauer G (1973) Katamnestische Studien bei 3/sec-spike-and-wave-Trägern. Fortschr Neurol Psychiat 41:177–224

    Google Scholar 

  6. Bauer G (2005) Coma and brain death. In: Niedermeyer E, Lopes da Silva F (Hrsg) Electroencephalography, 5. Aufl. Lippincott Williams & Wilkins, S 471–487

  7. Bauer G, Aichner F, Klingler D (1982) Aktivitäten im Alpha-Frequenzbereich und Koma. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 13:28–33

    CAS  PubMed  Google Scholar 

  8. Bauer G, Broessner G, Unterberger I et al (2008) Head turning as a prominent motor symptom in status epilepticus. Epileptic Disord 10:119–129

    PubMed  Google Scholar 

  9. Bauer G, Dobesberger J, Bauer R et al (2006) Prefrontal disturbances as the sole manifestation of simple partial nonconvulsive status epilepticus. Epilepsy Behav 8:331–335

    PubMed  Google Scholar 

  10. Bauer G, Gerstenbrand F, Rumpl E (1979) Varieties of the locked-in syndrome. J Neurol 221:77–91

    CAS  PubMed  Google Scholar 

  11. Bauer G, Trinka E (2010) Nonconvulsive status epilepticus and coma. Epilepsia 51:177–190

    PubMed  Google Scholar 

  12. Baykan B, Altindag E, Feddersen B et al (2011) Does semiology tell us the origin of seizures consisting mainly of an alteration in consciousness? Epilepsia 52:1459–1466

    PubMed  Google Scholar 

  13. Bell WL, Park YD, Thompson EA, Radtke RA (1998) Ictal cognitive assessment of partial seizures and pseudoseizures. Arch Neurol 55:1456–1459

    CAS  PubMed  Google Scholar 

  14. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51:676–685

    PubMed  Google Scholar 

  15. Berman R, Negishi M, Vestal M et al (2011) Simultaneous EEG, fMRI, and behaviour in typical childhood absence seizures. Epilepsia 51:2011–2022

    Google Scholar 

  16. Bleuler M, Willi J, Bühler HR (1966) Akute psychische Begleiterscheinungen körperlicher Erkrankungen. Thieme, Stuttgart

  17. Blume WT, Lemieux JF (1988) Morphology in spike-and-wave complexes. Electroencephalogr Clin Neurophysiol 69:508–515

    CAS  PubMed  Google Scholar 

  18. Blume WT, Lüders HO, Mizrahi E et al (2001) Glossary of ictal semiology. Epilepsia 42:1212–1218

    CAS  PubMed  Google Scholar 

  19. Blumenfeld H (2011) Epilepsy and the consciousness system: transient vegetative state? Neurol Clin 29:801–823

    PubMed Central  PubMed  Google Scholar 

  20. Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet Neurol 11:814–826

    PubMed Central  PubMed  Google Scholar 

  21. Blumenfeld H, McNally KA, Vanderhil SD et al (2004) Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 14:892–902

    PubMed  Google Scholar 

  22. Blumenfeld H, Meador KJ (2014) Consciousness as a useful concept in epilepsy classification. Epilepsia 55:1145–1150

    PubMed Central  PubMed  Google Scholar 

  23. Blumenfeld H, Taylor J (2003) Why do seizures cause loss of consciousness? Neuroscientist 9:301–310

    PubMed  Google Scholar 

  24. Blumenfeld H, Varghese GI, Purcaro MJ et al (2009) Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 132:999–1012

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Browne TR, Penry JK, Porter RJ, Dreifuss FE (1974) Responsiveness before, during, and after spike-wave paroxysms. Neurology 24:659–665

    CAS  PubMed  Google Scholar 

  26. Buckner RI, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  27. Caplan R, Levitt J, Siddarth P et al (2009) Frontal and temporal volumes in childhood absence epilepsy. Epilepsia 50:2466–2472

    PubMed  Google Scholar 

  28. Carney PW, Masterton RAJ, Flanagan D et al (2012) The frontal lobe in absence epilepsy. EEG-fMRI findings. Neurology 78:1157–1165

    CAS  PubMed  Google Scholar 

  29. Cavanna AE, Ali F (2011) Epilepsy: the quintessential pathology of consciousness. Behav Neurol 24:3–10

    PubMed  Google Scholar 

  30. Chatrian G-E, Turella GS (2003) Electrophysiological evaluation of coma, other states of diminished responsiveness, and brain death. In: Ebersole JS, Pedley TA (Hrsg) Current practice of clinical electroencephalography, 3. Aufl. Lippincott Williams & Wilkins, S 405–462

  31. Chen CAN, Feng W, Zhao H et al (2008) EEG default mode network in the human brain: spectral regional field powers. NeuroImage 41:561–574

    PubMed  Google Scholar 

  32. Chin PS, Miller JW (2004) Ictal head version in generalized epilepsy. Neurology 63:370–372

    PubMed  Google Scholar 

  33. Commission on Classification and Terminology of the ILAE (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489–501

    Google Scholar 

  34. Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workshop framework. Cognition 79:1–37

    CAS  PubMed  Google Scholar 

  35. Delacour J (1997) Neurobiology of consciousness: an overview. Behav Brain Res 85:127–141

    CAS  PubMed  Google Scholar 

  36. DeToledo JC, Ramsay RE (1996) Patterns of involvement of facial muscles during epileptic and nonepileptic events: review of 654 events. Neurology 47:621–625

    CAS  PubMed  Google Scholar 

  37. DiFrancesco MW, Holland SK, Szaflarski JP (2008) Simultaneous EEG/functional magnetic resonance imaging at 4 tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation. J Clin Neurophysiol 25:255–264

    PubMed Central  PubMed  Google Scholar 

  38. Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42:796–803

    PubMed  Google Scholar 

  39. Engel J (2006) Report of the ILAE classification core group. Epilepsia 47:1558–1568

    PubMed  Google Scholar 

  40. Engel J, Kuhl DE, Phelps ME (1982) Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218:64–66

    PubMed  Google Scholar 

  41. Englot DJ, Yang L, Hamid H et al (2010) Impaired consciousness in temporal lobe seizures: role of cortical slow activity. Brain 133:3764–3777

    PubMed Central  PubMed  Google Scholar 

  42. Escueta AVD, Bascal FE, Treiman DM (1982) Complex partial seizures on closed-circuit television and EEG: a study of 691 attacks in 79 patients. Ann Neurol 11:292–300

    CAS  PubMed  Google Scholar 

  43. Forgacs PB, Conte MM, Fridman EA et al (2014) Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol 76:869–879

    PubMed Central  PubMed  Google Scholar 

  44. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Frith C, Perry R, Lumer E (1999) The neural correlates of conscious experience: an experimental framework. Trends Cogn Sci 3:105–114

    PubMed  Google Scholar 

  46. Fromm GH (1986) Role of inhibitory mechanisms in staring spells 1. J Clin Neurophysiol 3:297

    CAS  PubMed  Google Scholar 

  47. Gastaut H, Broughton R (1972) Epileptic seizures. Thomas, Springfield-Illinois

  48. Gerstenbrand F (1967) Das traumatische apallische Syndrom. Springer, Wien

  49. Gerstenbrand F, Lücking CH (1970) Die akuten traumatischen Hirnstammschäden. Arch Psychiatr Nervenkr 213:264–281

    CAS  PubMed  Google Scholar 

  50. Giacino JT, Ashwal S, Childs N et al (2002) The minimally conscious state. Definition and diagnostic criteria. Neurology 58:349–353

    PubMed  Google Scholar 

  51. Gloor P (1986) Consciousness as a neurological concept in epileptology: a critical review. Epilepsia 27(Suppl 2):S14–S26

    PubMed  Google Scholar 

  52. Gotman J, Grova C, Bagshaw A et al (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102:15236–15240

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Hamandi K, Laufs H, Nöth H et al (2008) BOLD and perfusion changes during epileptic generalized spike wave activity. NeuroImage 39:608–618

    PubMed  Google Scholar 

  54. Hamandi K, Salek-Haddadi A, Laufs H et al (2006) EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage 31:1700–1710

    PubMed  Google Scholar 

  55. Harrison AH, Conolly JF (2013) Finding a way in: a review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness. Neurosci Biobehav Rev 37:1403–1419

    PubMed  Google Scholar 

  56. Hogan R, Kairiboriboon K (2003) The „dreamy state“: John Hughlings-Jackson’s ideas of epilepsy and consciousness. Am J Psychiatry 160:1740–1747

    PubMed  Google Scholar 

  57. Holmes MD, Tucker DM (o J) Identifying the epileptic network. doi:103389/fneurol.2013.00084

  58. Janz D (1969) Die Epilepsien. Thieme, Stuttgart Georg

  59. Johanson M, Valli K, Revonsuo A (2011) How to assess ictal consciousness? Behav Neurol 24:11–20

    PubMed  Google Scholar 

  60. Kant I (1791) Kritik der reinen Vernunft, 1. Ausgabe. S A345–A347

  61. Kaplan PW, Drislane FW (eds) (2009) Nonconvulsive status epilepticus. Demos Medical, New York

  62. Kobayashi E, Bagshaw AP, Grova C et al (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27:488–497

    PubMed  Google Scholar 

  63. Kohsaka S, Mizukami S, Kohsaka M et al (2002) Widespread activation of the brainstem preceding the recruiting rhythm in human epilepsies. Neuroscience 115:697–706

    CAS  PubMed  Google Scholar 

  64. Lagae L, Pauwels J, Monté CP et al (2001) Frontal absences in children. Eur J Paediatr Neurol 5:243–251

    CAS  PubMed  Google Scholar 

  65. Lambert I, Arthuis M, McGonigal A et al (2012) Alteration of global workspace during loss of consciousness: a study of parietal seizures. Epilepsia 53:2104–2110

    PubMed  Google Scholar 

  66. Lamme VAF (2006) Towards a true neural stance on consciousness. Trends Cogn Sci 10:494–501

    PubMed  Google Scholar 

  67. Laufs H, Kleinschmidt A, Beyerle A et al (2003) EEG-correlated fMRI of human alpha activity. NeuroImage 19:1463–1476

    CAS  PubMed  Google Scholar 

  68. Laufs H, Lengler U, Hamandi K et al (2006) Linking generalized spike –and wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 47:444–448

    PubMed  Google Scholar 

  69. Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559

    PubMed  Google Scholar 

  70. Laureys S, Celesia GG, Cohadon F et al (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8:68–71

    PubMed Central  PubMed  Google Scholar 

  71. Lee KH, Meador KJ, Park YD et al (2002) Pathophysiology of altered consciousness during seizures. Neurology 59:841–846

    CAS  PubMed  Google Scholar 

  72. Li Q, Luo C, Yang T et al (2009) EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy. Epilepsy Res 87:160–168

    PubMed  Google Scholar 

  73. Lombroso CT (1997) Consistent EEG focalities detected in subjects with primary generalized epilepsies monitored for two decades. Epilepsia 38:797–812

    CAS  PubMed  Google Scholar 

  74. Lüders H, Amina S, Bailey C et al (2004) Proposal: different types of alteration and loss of consciousness in epilepsy. Epilepsia 55:1140–1144

    Google Scholar 

  75. Lux S, Kurthen M, Helmstaedter C et al (2002) The localizing value of ictal consciousness and its constituent functions. A video-EEG study in patients with focal epilepsy. Brain 125:2691–2698

    CAS  PubMed  Google Scholar 

  76. Manford M, Fish DR, Shorvon SD (1996) An analysis of clinical seizure patterns and their localizing value in frontal and temporal lobe epilepsies. Brain 119:17–40

    PubMed  Google Scholar 

  77. Mason MF, Norton MI, Van Horn JD et al (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Matthes A (1967) Klinische und elektroencephalographische Beobachtungen zur Frage der Prognose der Pyknolepsien. Z Ges Neurol Psychiatr 188:16

    Google Scholar 

  79. Mazoyer B, Zago L, Mellet E et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    CAS  PubMed  Google Scholar 

  80. McPherson A, Rojas L, Bauerschmidt A et al (2012) Testing for minimal consciousness in complex partial and generalized tonic-clonic seizures. Epilepsia 53:e180–e183

    PubMed Central  PubMed  Google Scholar 

  81. Meeren HKM, Luijtelaar ELJM van, Lopes da Silva F, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures. The cortical focus theory. Arch Neurol 62:371–376

    PubMed  Google Scholar 

  82. Meyer-Mickeleit RW (1950) Über die sogenannten psychomotorischen Anfälle, die Dämmerattacken der Epileptiker. Arch Psychiatr Nervenkr 184:271

    Google Scholar 

  83. Miao A, Tang L, Xiang J et al (2004) Dynamic magnetic source imaging of absence seizure inialization and propagation: a magnetoencephalography study. Epilepsy Res 108:468–480

    Google Scholar 

  84. Moeller F, Siebner HR, Wolff S et al (2008) Simultaneous EEG-fMRI in drug-naïve children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519

    PubMed  Google Scholar 

  85. Moeller F, Stephani U, Siniatchkin M (2013) Simultaneous EEG and fMRI recordings (EEG-fMRI) in children with epilepsy. Epilepsia 54:971–982

    PubMed  Google Scholar 

  86. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    CAS  PubMed  Google Scholar 

  87. Niedermeyer E (1999) A concept of consciousness. Ital J Neurol Sci 20:7–15

    CAS  PubMed  Google Scholar 

  88. Noachtar S, Binnie C, Ebersole J et al (1999) A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. In: Deuschl G, Eisen A (Hrsg) Recommendations for the practice of clinical neurophysiology: guidelines of the International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:21–41

    CAS  PubMed  Google Scholar 

  89. Paillas J, Gastaut H, Tamlet J (1949) Les fausses absences d’origine temporale, a propos de treize observations anatomo-clinique avec controle electroencephalographique. Rev Neurol 81:285

    Google Scholar 

  90. Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79:135–159

    CAS  PubMed  Google Scholar 

  91. Pavone A, Niedermeyer E (2000) Absence seizures and the frontal lobe. Clin Electroencephalogr 31:153–156

    CAS  PubMed  Google Scholar 

  92. Penry JK, Dreifuss FE (1969) Automatisms associated with the absence of petit mal epilepsy. Arch Neurol 21:142–149

    CAS  PubMed  Google Scholar 

  93. Plum F, Posner JB (1972) The diagnosis of stupor and coma, 1. Aufl. FA Davis, Philadelphia

  94. Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Rodin E, Ancheta O (1987) Cerebral electrical fields during petit mal absences. Electroencephalogr Clin Neurophysiol 66:457–466

    CAS  PubMed  Google Scholar 

  96. Sadleir LG, Farrell K, Smith S et al (2006) Electroclinical features of absence seizures in childhood absence epilepsy. Neurology 67:413–418

    CAS  PubMed  Google Scholar 

  97. Salek-Haddadi A, Lemieux L, Merschhemke M et al (2003) Functional magnetic resonance imaging of human absence seizures. Ann Neurol 53:663–667

    PubMed  Google Scholar 

  98. Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118

    PubMed  Google Scholar 

  99. Schindler K, Leung H, Lehnertz K, Elger CE (2007) How generalized are secondarily „generalized“ tonic-clonic seizures? J Neurol Neurosurg Psychiatry 78:993–996

    PubMed Central  PubMed  Google Scholar 

  100. Schnakers C, Laureys S, Majerus S (2011) I am conscious. Mr ASL says so. Neurology 77:1506–1507

    PubMed  Google Scholar 

  101. Seth AK, Dienes Z, Cleeremans A et al (2008) Measuring consciousness: relating behavioural and neurophysiological approaches. Trends Cogn Res 12(8):314–321

    Google Scholar 

  102. Silva S, Alacoque X, Fourcade O et al (2010) Wakefulness and loss of awareness. Brain and brainstem interaction in the vegetative state. Neurology 74:313–320

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Stefan H (1982) Epileptische Absencen. Studien zur Anfallsstruktur, Pathophysiologie und zum klinischen Verlauf. Georg Thieme, Stuttgart

  104. Tenney JR, Fujiwara H, Horn PS et al (2014) Low- and high-frequency oscillations reveal distinct absence seizure networks. Ann Neurol 76:558–567

    PubMed  Google Scholar 

  105. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42

    PubMed Central  PubMed  Google Scholar 

  106. Vuilleumier P, Assal F, Blanke O, Jallon P (2000) Distinct behavioural and EEG topographic correlates of loss of consciousness in absences. Epilepsia 41:687–693

    CAS  PubMed  Google Scholar 

  107. Watanabe K, Negoro T, Matsumoto A et al (1984) Epileptic nystagmus associated with typical absence seizures. Epilepsia 25:22–24

    CAS  PubMed  Google Scholar 

  108. Westmijse I, Ossenblock P, Gunning B, Luijtelaar G van (2009) Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study. Epilepsia 50:2538–2548

    PubMed  Google Scholar 

  109. Woermann FG, Free SL, Koepp MJ et al (1999) Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 122:2101–2107

    PubMed  Google Scholar 

  110. Wolf P (2003) Of cabbages and kings: some considerations on classifications, diagnostic schemes, semiology, and concepts. Epilepsia 44:1–4

    PubMed  Google Scholar 

  111. Yang L, Shklyar I, Lee HW et al (2012) Impaired consciousness in epilepsy investigated by a prospective responsiveness in epilepsy scale (RES). Epilepsia 53:437–447

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Zeman A (2001) Consciousness. Brain 124:1263–1289

    CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. G. Bauer, G. Walser und I. Unterberger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, G., Walser, G. & Unterberger, I. Bewusstseinsstörungen während epileptischer Anfälle. Z. Epileptol. 28, 213–219 (2015). https://doi.org/10.1007/s10309-015-0418-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-015-0418-2

Schlüsselwörter

Keywords

Navigation