Skip to main content
Log in

Relevante genetische Befunde für die Praxis

Relevant genetic findings for practical applications

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Die genetische Testung gewinnt in der klinischen Epileptologie zunehmend an Bedeutung. Zum einen dient der Nachweis einer Mutation der frühzeitigen Diagnosesicherung, die neben der Prognoseeinschätzung abhängig von der Mutation auch die Wahl der antiepileptischen Medikation beeinflussen kann. Zum anderen kann eine frühzeitige genetische Beratung erfolgen. In dem vorliegenden Artikel werden die wesentlichen Genvarianten dargestellt, die einen Einfluss auf Therapieentscheidungen haben können. Dies betrifft nicht nur Mutationen, die aufgrund der funktionellen Konsequenzen die Vermeidung oder Bevorzugung eines Präparates oder einer Methode anzeigen, sondern auch Nebenwirkungen von antikonvulsiven Medikamenten vorhersagen können.

In der Zukunft sind durch das rasch wachsende Feld der Epilepsiegenetik und der Pharmakogenetik immer mehr Medikamente für eine spezifische und individualisierte Behandlung von Epilepsiepatienten zu erwarten.

Abstract

Genetic testing is an emerging field in clinical epileptology. It is an important tool for verifying the clinical diagnosis, which enables us to predict the long-term outcome of a patient. In certain cases, the detection of a mutation even modifies our therapeutic approach. It also helps us in genetic counselling. This article focusses on gene variants that have a possible influence on therapeutic decisions. These are not only mutations which indicate whether a drug should be preferred or avoided, based on the functional consequences, but may also predict side effects.

Genetics and pharmacogenetics in epilepsy are fast growing fields which promise to provide much more information to clinicians in the future to intensify individualized anticonvulsive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Chen P, Lin JJ, Lu CS et al (2011) Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 364:1126–1133

    Article  CAS  PubMed  Google Scholar 

  2. Chen W-J, Lin Y, Xiong Z-Q et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252–1255

    Article  CAS  PubMed  Google Scholar 

  3. Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1a cause severe Myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Vivo DC, Trifiletti RR, Jacobson RI et al (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent Hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–709

    Article  PubMed  Google Scholar 

  5. Dravet C (1978) Les epilepsies graves de l’enfant. Vie Med 8:543–548

    Google Scholar 

  6. Grover S, Kukreti R (2014) HLA alleles and hypersensitivity to carbamazepine: an updated systematic review with meta-analysis. Pharmacogenet Genom 24:94–112

    Article  CAS  Google Scholar 

  7. Guerrini R, Dravet C, Genton P et al (1998) Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39:508–512

    Article  CAS  PubMed  Google Scholar 

  8. Heron SE, Grinton BE, Kivity S et al (2012) PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with Choreoathetosis syndrome. Am J Hum Genet 90:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hung S-I, Chung W-H, Jee S-H et al (2006) Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genom 16:297–306

    Article  CAS  Google Scholar 

  10. Kerr PM, Clément-Chomienne O, Thorneloe KS et al (2001) Heteromultimeric Kv1.2–Kv1.5 channels underlie 4-aminopyridine-sensitive delayed rectifier K(+) current of rabbit vascular myocytes. Circ Res 89:1038–1044

    Article  CAS  PubMed  Google Scholar 

  11. Lemke JR, Lal D, Reinthaler EM et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 459:1067–1072

    Article  Google Scholar 

  12. Lemke JR, Hendrickx R, Geider K et al (2014) GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 75:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao Y, Anttonen A-K, Liukkonen E et al (2010) SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 75:1454–1458

    Article  CAS  PubMed  Google Scholar 

  14. McCormack M, Alfirevic A, Bourgeois S et al (2011) HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans. N Engl J Med 364:1134–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mikati MA, Jiang YH, Carboni M et al (2015) Quinidine in the treatment of KCNT1 positive epilepsies. Ann Neurol. doi:10.1002/ana.24520. (Epub ahead of print)

    PubMed  PubMed Central  Google Scholar 

  16. Milligan CJ, Li M, Gazina EV et al (2014) KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 75:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mulley JC, Scheffer IE, Petrou S et al (2005) SCN1A mutations and epilepsy. Hum Mutat 25:535–542

    Article  CAS  PubMed  Google Scholar 

  18. Ogiwara I, Ito K, Sawaishi Y et al (2009) De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies. Neurology 73:1046–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orhan G, Bock M, Schepers D et al (2014) Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 75:382–394

    Article  CAS  PubMed  Google Scholar 

  20. Ottman R, Hirose S, Jain S et al (2010) Genetic testing in the epilepsies-Report of the ILAE Genetics Commission. Epilepsia 51:655–670

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pierson TM, Yuan H, Marsh ED et al (2014) GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 1:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pisano T, Numis AL, Heavin SB et al (2015) Early and effective treatment of KCNQ2 encephalopathy. Epilepsia 56:685–691

    Article  CAS  PubMed  Google Scholar 

  23. Schubert J, Siekierska A, Langlois M et al (2014) Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet 46:1327–1332

    Article  CAS  PubMed  Google Scholar 

  24. Suls A, Jaehn JA, Kecskés A et al (2013) De Novo Loss-of-Function Mutations in CHD2 Cause a Fever-Sensitive Myoclonic Epileptic Encephalopathy Sharing Features with Dravet Syndrome. Am J Hum Genet 93:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Article  CAS  PubMed  Google Scholar 

  26. Syrbe S, Hedrich UBS, Riesch E et al (2015) De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat Genet 47:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veeramah KR, O’Brien JE, Meisler MH et al (2012) De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 90:502–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50:648–654

    Article  PubMed  Google Scholar 

  29. Weber YG, Lerche H (2011) Indikationen zur genetischen Diagnostik bei Epilepsie. Z Epileptol 24:128–132

    Article  Google Scholar 

  30. Weber YG, Nies AT, Schwab M, Lerche H (2014) Genetic Biomarkers in Epilepsy. Neurotherapeutics 11:324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Investig 118:2157–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Weckhuysen S, Mandelstam S, Suls A et al (2012) KCNQ2 encephalopathy: Emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25

    Article  CAS  PubMed  Google Scholar 

  33. Wuttke TV, Seebohm G, Bail S et al (2005) The new anticonvulsant Retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 67:1009–1017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne G. Weber.

Ethics declarations

Interessenkonflikt

J. Kegele und Y. G. Weber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kegele, J., Weber, Y.G. Relevante genetische Befunde für die Praxis. Z. Epileptol. 29, 87–92 (2016). https://doi.org/10.1007/s10309-015-0035-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-015-0035-0

Schlüsselwörter

Keywords

Navigation