Skip to main content
Log in

Idiopathische generalisierte Epilepsien und Fotosensitivität

Klinik und Genetik

Idiopathic generalized epilepsies and photosensitivity

Clinical and genetic factors

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Die idiopathischen/genetischen Epilepsien machen einen großen Teil der Epilepsien im Kindes- und Jugendalter aus. Die klassischen Formen, die kindliche sowie die juvenile Absenceepilepsie, die juvenile myoklonische Epilepsie und die Aufwachepilepsie mit GTKA haben überwiegend ein gutes psychosoziales Outcome und können mit Valproinsäure und Ethosuximid als Mittel der ersten Wahl sowie Levetiracetam, Lamotrigin, Topiramat und Perampanel behandelt werden. Die einzelnen Subtypen der IGE zeichnen sich durch einen definierten Beginn der Anfälle mit Bindung an das Kindes-, Jugend- oder Adoleszentenalter, typische generalisierte Anfallstypen, typische Auffälligkeiten im EEG, eine normale zerebrale Kernspintomografie und eine häufig normale psychomotorische Entwicklung aus. Hauptsächlich werden komplex genetische Störungen vermutet. Hierbei konnten insbesondere strukturelle genetische Veränderungen wie copy number variations (CNVs) vor allem der Loci 15q13.3, 15q11 und 16p13 als Risikofaktor identifiziert werden. Mutationen in Genen für einen T‑Typ Kalzium- (CACNA1H) und einen P/Q-Typ Kalziumkanal (CACNAB4, CACNA1A) werden ebenfalls mit als Entstehungsfaktor für IGE vermutet. Selten können monogenetische Defekte als Hauptursache für eine Epilepsie nachgewiesen werden. Oft sind diese mit weiteren Symptomen wie Ataxie, Bewegungsstörungen und mentaler Entwicklungsverzögerung assoziiert. Hier sind vor allem Mutationen in GABAA-Rezeptoren- und in GLUT1-Genen (SLC2A1) zu nennen.

Die Fotosensitivität ist häufig mit IGE assoziiert, kann jedoch auch unabhängig vorkommen. Auch hier wird eine genetische Ursache diskutiert, als wichtiges Kandidatengen wurde bisher CHD2 gefunden.

Abstract

Idiopathic/genetic epilepsies (IGE/GGE) represent a large group among epilepsies of childhood and adolescence. The typical subtypes, childhood and juvenile absence epilepsy, juvenile myoclonic epilepsy, and epilepsy with generalized tonic–clonic seizures on awakening, showed a favourable psychosocial outcome in the majority of cases. They can be treated with valproic acid and ethosuximide as first-line medication, and levetiracetam, lamotrigine, topiramate and perampanel. Each subtype of IGE/GGE is defined by its specific age of onset (childhood or adolescence) and type of generalized seizures, typical findings on the EEG, a normal cerebral MRI and often normal psychomotor development. In the underlying cause of these epilepsies complex genetic defects are believed to play a major role, namely structural genetic variation. For example, copy number variations in loci 15q13.3, 15q11 and 16p13 could be identified as one risk factor. Mutations in calcium channel genes (namely T-type calcium channel, CACNA1H, and P/Q-type calcium channel, CACNAB4 and CACNA1A) seem to take part in the pathomechanism of IGE. Monogenetic defects are seldom found to be the main cause of epilepsy. These monogenetic defects, mainly in the GABAA-receptor- and GLUT1 genes (SLC2A1), are often associated with other symptoms such as ataxia, movement disorders and mental retardation.

Photosensitivity is often seen in IGE, but can also occur without IGE. A genetic cause is also assumed; one of the most important candidate genes is CHD2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Arsov T, Mullen SA, Rogers S et al (2012) Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol 72(5):807–815

    Article  CAS  PubMed  Google Scholar 

  2. Bartolini E, Pesaresi I, Fabbri S et al (2014) Abnormal response to photic stimulation in Juvenile Myoclonic Epilepsy: An EEG-fMRI study. Epilepsia 55(7):1038–1047

    Article  PubMed  Google Scholar 

  3. Berg AT, Levy SR, Testa FM et al (2014) Long-term seizure remission in childhood absence epilepsy: might initial treatment matter? Epilepsia 55(4):551–557

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005 – 2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  5. Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31(7):545–552

    Article  PubMed  Google Scholar 

  6. Callenbach PMC, Bouma PAD, Geerts AT et al (2009) Long-term outcome of childhood absence epilepsy: Dutch study of epilepsy in childhood. Epilepsy Res 83(2–3):249–256

    Article  PubMed  Google Scholar 

  7. Callenbach PMC, Geerts AT, Arts WFM et al (1998) Familial occurrence of epilepsy in children with newly diagnosed multiple seizures: Dutch study of epilepsy in childhood. Epilepsia 39(3):331–336

    Article  CAS  PubMed  Google Scholar 

  8. de Kovel CGF, Trucks H, Helbig I et al (2010) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133(1):23–32

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Kovel CGF, Pinto D, Tauer U et al (2010) Whole-genome linkage scan for epilepsy-related photosensitivity: a mega-analysis. Epilepsy Res 89(2–3):286–294

    Article  PubMed  Google Scholar 

  10. Freitag CM, May TW, Pfäfflin M et al (2001) Incidence of epilepsies and epileptic syndromes in children and adolescents: a population-based prospective study in Germany. Epilepsia 42(8):979–985

    Article  CAS  PubMed  Google Scholar 

  11. French JA, Krauss GL, Wechsler RT et al (2015) Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy. Neurology 85(11):950–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galizia EC, Myers CT, Leu C et al (2015) CHD2 variants are a risk factor for photosensitivity in epilepsy. Brain 138(5):1198–1207

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glauser TA, Cnaan A, Shinnar Sh et al (2010) Ethosuximide, Valproic Acid, and Lamotrigine in Childhood Absence Epilepsy. New Engl J Med 362(9):790–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Helbig I, Mefford HC, Sharp AJ et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41(2):160–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holtkamp M, Kowski AB, Merkle H et al (2014) Long-term outcome in epilepsy with grand mal on awakening: forty years of follow-up. Ann Neurol 75:298–302

    Article  PubMed  Google Scholar 

  16. Holtkamp M, Senf P, Kirschbaum A et al (2014) Psychosocial long-term outcome in juvenile myoclonic epilepsy. Epilepsia 55(11):1732–1738

    Article  PubMed  Google Scholar 

  17. ILAE Consortium on Complex Epilepsies (2014) Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol 13(9):893–903

    Article  Google Scholar 

  18. Italiano D, Ferlazzo E, Gasparini S et al (2014) Generalized versus partial reflex seizures: A review. Seizure 23:512–520

    Article  PubMed  Google Scholar 

  19. Klassen T, Davis C, Goldman A et al (2011) Exome sequencing of ion channel genes reveals complex variant profiles confounding personal risk assessment in epilepsy. Cell 145(7):1036–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lal D, Ruppert AK, Trucks H et al (2015) Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies. PloS Genet 11(5):e1005226

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu Y, Waltz S, Stenzel K et al (2008) Photosensitivity in epileptic syndromes of childhood and adolescence. Epileptic Disord 10(2):136–143

    PubMed  Google Scholar 

  22. Moeller F, Siebner HR, Ahlgrimm N et al (2009) fMRI activation during spike and wave discharges evoked by photic stimulation. Neuroimage 48(4):682–695

    Article  PubMed  Google Scholar 

  23. Nickels K (2015) Seizure and psychosocial outcomes of childhood and juvenile onset generalized epilepsies: wolf in sheep’s clothing, or well-dressed wolf? Epilepsy Curr 15(3):114–117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pinto D, Kasteleijn-Nolst TDG, Cordell HJ et al (2007) Explorative two-locus linkage analysis suggests a multiplicative interaction between the 7q32 and 16p13 myoclonic seizures-related photosensitivity loci. Genet Epidemiol 31(1):42–50

    Article  PubMed  Google Scholar 

  25. Senf P, Schmitz B, Holtkamp M et al (2013) Prognosis of juvenile myoclonic epilepsy 45 years after onset. Neurology 81:2128–2133

    Article  PubMed  Google Scholar 

  26. Striano P, Weber YG, Toliat MR et al (2012) GLUT1 mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 78(8):557–562

    Article  CAS  PubMed  Google Scholar 

  27. Suls A, Jaehn JA, Kecskés A et al (2013) De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 93(5):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suls A, Mullen SA, Weber YG et al (2009) Early-Onset Absence Epilepsy Caused by Mutations in the Glucose Transporter GLUT1. Ann Neurol 66:415–419

    Article  CAS  PubMed  Google Scholar 

  29. Tauer U, Lorenz S, Lenzen KP et al (2005) Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy. Ann Neurol 57(6):866–873

    Article  CAS  PubMed  Google Scholar 

  30. Thomas RH, Zhang LM, Carvill GL et al (2015) CHD2 myoclonic encephalopathy is frequently associated with self-induced seizures. Neurology 84(9):951–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waltz S, Christen HJ, Doose H (1992) The different patterns of the photoparoxysmal response – a genetic study. Electroencephalogr Clin Neurophysiol 83(2):138–145

    Article  CAS  PubMed  Google Scholar 

  32. Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50:648–654

    Article  PubMed  Google Scholar 

  33. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118(6):2157–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yagi K (2004) Overview of Japanese experience-controlled and uncontrolled trials. Seizure 13:11–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lerche.

Ethics declarations

Interessenkonflikt

N. Winter, H. Muhle und H. Lerche geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet als Übersicht keine eigenen Originalstudien an Menschen oder Tieren. Bezüglich solcher Studien aus den zitierten Arbeiten wird auf diese verwiesen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winter, N., Muhle, H. & Lerche, H. Idiopathische generalisierte Epilepsien und Fotosensitivität. Z. Epileptol. 29, 63–69 (2016). https://doi.org/10.1007/s10309-015-0033-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-015-0033-2

Schlüsselwörter

Keywords

Navigation