Skip to main content
Log in

Metabolische Epilepsien im Kindes- und Jugendalter

Metabolic epilepsy in childhood and adolescence

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Epilepsien werden nur selten durch angeborene Stoffwechselerkrankungen verursacht. Meist ist die Epilepsie dann nicht das einzige Symptom eines Stoffwechseldefekts, sondern es finden sich weitere Auffälligkeiten, die zur Diagnosefindung beitragen. Der vorliegende Beitrag gibt eine Übersicht über metabolische Epilepsien mit Manifestation in Säuglings-, Kleinkind-, Schul- und Jugendalter. Neben den zugrunde liegenden Pathomechanismen, den genetischen Ursachen und möglichen Therapieoptionen werden insbesondere die für die Diagnosefindung wichtigen klinischen Symptome sowie laborchemischen und apparativen Befunde dargestellt.

Abstract

Epilepsies are only rarely caused by inborn errors of metabolism; however, knowledge about such metabolic epilepsies is important for treatment, prognosis estimation, and genetic counselling. Usually, epilepsy is not the only symptom of a neurometabolic disease. In most disorders additional features help making the diagnosis. This review provides an overview about metabolic epilepsies manifesting in infancy, childhood, and adolescence. Pathomechanisms, genetic causes, and potential treatment options are presented, while special focus is given to clinical symptoms, laboratory and other paraclinical findings crucial for a correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Arsov T, Smith KR, Damiano J et al (2011) Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet 88:566–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bassuk AG, Wallace RH, Buhr A et al (2008) A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet 83:572–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Boissé Lomax L, Bayly MA, Hjalgrim H et al (2013) ‚North Sea‘ progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain 136:1146–1154

    Article  Google Scholar 

  4. Cadieux-Dion M, Andermann E, Lachance-Touchette P et al (2013) Recurrent mutations in DNAJC5 cause autosomal dominant Kufs disease. Clin Genet 83:571–575

    Article  CAS  PubMed  Google Scholar 

  5. Davis RL, Shrimpton AE, Holohan PD et al (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401:376–379

    CAS  PubMed  Google Scholar 

  6. Koning TJ de (2006) Treatment with amino acids in serine deficiency disorders. J Inherit Metab Dis 29:347–351

    Article  PubMed  Google Scholar 

  7. Delgado-Escueta AV (2007) Advances in lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep 7:428–433

    Article  CAS  PubMed  Google Scholar 

  8. Genton P, Degado Escueta AV, Serratosa JM et al (2012) Progressive myoclonus epilepsies. In: Bureau M, Genton P, Dravet C et al (Hrsg) Epileptic syndromes in infancy, childhood and adolescence, 5. Aufl. Libbey, New Barnet, S 575–606

  9. Goebel HH, Wisniewski KE (2004) Current state of clinical and morphological features in human NCL. Brain Pathol 14:61–69

    Article  CAS  PubMed  Google Scholar 

  10. Hopfner F, Schormair B, Knauf F et al (2011) Novel SCARB2 mutation in action myoclonus-renal failure syndrome and evaluation of SCARB2 mutations in isolated AMRF features. BMC Neurol 11:134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jalanko A, Braulke T (2009) Neuronal ceroid lipofuscinoses. Biochim Biophys Acta 1793:697–709

    Article  CAS  PubMed  Google Scholar 

  12. Kälviäinen R, Khyuppenen J, Koskenkorva P et al (2008) Clinical picture of EPM1-Unverricht-Lundborg disease. Epilepsia 49:549–556

    Article  PubMed  Google Scholar 

  13. Livet M-O, Aicardi J, Plouin P et al (2002) Epilepsies in inborn errors of metabolism. In: Roger J, Bureau M, Dravet C et al (Hrsg) Epileptic syndromes in infancy, childhood and adolescence, 4. Aufl. Libbey, New Barnet, S 389–405

  14. Milone M, Massie R (2010) Polymerase gamma 1 mutations: clinical correlations. Neurologist 16:84–91

    Article  PubMed  Google Scholar 

  15. Pearl PL, Gibson KM, Acosta MT et al (2003) Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 60:1413–1417

    Article  CAS  PubMed  Google Scholar 

  16. Plecko B, Brunner-Krainz M, Gruber-Sedlmayr U et al (2005) Epilepsie als Leitsymptom angeborener Stoffwechselstörungen. J Neurol Neurochir Psychiatr 5:2–11

    Google Scholar 

  17. Plecko B (2012) Metabolische Epilepsien mit spezifischen Therapieoptionen. Diagnostischer Leitfaden. Monatsschr Kinderheilkd 160:723–733

    Article  Google Scholar 

  18. Poll-The BW (2004) Disorders of metabolism and neurodegenerative disorders associated with epilepsy. In: Wallace SJ, Farrell K (Hrsg) Epilepsy in children, 2. Aufl. Arnold, London, S 65–75

  19. Prasad AN, Rupar CA, Prasad C (2011) Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain Dev 33:758–769

    Article  PubMed  Google Scholar 

  20. Ranta S, Topcu M, Tegelberg S et al (2004) Variant late infantile neuronal ceroid lipofuscinosis in a subset of Turkish patients is allelic to Northern epilepsy. Hum Mutat 23:300–305

    Article  CAS  PubMed  Google Scholar 

  21. Schänzer A, Döring B, Ondrouschek M et al (2013) Stress induced up-regulation of SlC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease. Brain Pathol. DOI 10.1111/bpa.12117

  22. Staropoli JF, Karaa A, Lim ET et al (2012) A homozygous mutation in KCTD7 links neuronal ceroid lipofuscinosis to the ubiquitin-proteasome system. Am J Hum Genet 91:202–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Steinfeld R, Grapp M, Kraetzner R et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tsao CY (2009) Current trends in the treatment of infantile spasms. Neuropsychiatr Dis Treat 5:289–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tümer Z, Møller LB (2010) Menkes disease. Eur J Hum Genet 18:511–518

    Article  PubMed Central  PubMed  Google Scholar 

  26. Weber P, Scholl S, Baumgartner ER (2004) Outcome in patients with profound biotinidase deficiency: relevance of newborn screening. Dev Med Child Neurol 46:481–484

    Article  PubMed  Google Scholar 

  27. Zhou J, Tawk M, Tiziano FD et al (2012) Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am J Hum Genet 91:5–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. A. Hahn gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, A. Metabolische Epilepsien im Kindes- und Jugendalter. Z. Epileptol. 27, 170–177 (2014). https://doi.org/10.1007/s10309-014-0370-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-014-0370-6

Schlüsselwörter

Keywords

Navigation