Skip to main content
Log in

Genetik epileptischer Enzephalopathien

Genetics of epileptic encephalopathies

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Als Ursachen epileptischer Enzephalopathien (EE) sind Läsionen, Fehlbildungen, Stoffwechselerkrankungen und genetische Veränderungen zu nennen. Gerade in den letzten Jahren wurden Fortschritte im Verständnis der Genetik epileptischer Enzephalopathien gemacht. Da diese Erkrankungen einerseits mit wenigen Ausnahmen genetisch sehr heterogen erscheinen und andererseits eine Vielzahl genetischer Untersuchungen verfügbar ist, gestaltet sich die Auswahl der gendiagnostischen Verfahren schwierig. Der vorliegende Beitrag gibt einen Überblick über die genetische Herangehensweise an EE anhand von 3 Leitphänotypen (neonatale EE, infantile EE und EE des Kleinkind-/frühen Kindesalters).

Abstract

The causes of epileptic encephalopathies are lesions, malformations, metabolic diseases and genetic alterations. Advances have very recently been made in the understanding of the genetics of epileptic encephalopathies. Because on the one hand these diseases with few exceptions appear to be genetically very heterogeneous and on the other hand many genetic investigations are available, the selection for genetic diagnostics is difficult. This article gives an overview of the genetic approach to epileptic encephalopathies exemplified by the three main phenotypes (neonatal, infantile and early childhood epileptic encephalopathies).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Guerrini R (2006) Epilepsy in children. Lancet 367:499–524

    Article  PubMed  Google Scholar 

  2. Moller RS et al (2013) Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy. Epilepsia 54:256–264

    Article  CAS  PubMed  Google Scholar 

  3. Novarino G, Baek ST, Gleeson JG (2013) The sacred disease: the puzzling genetics of epileptic disorders. Neuron 80:9–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dixon-Salazar TJ et al (2012) Exome sequencing can improve diagnosis and alter patient management. Sci Transl Med 4:138ra78

    PubMed  Google Scholar 

  5. Claes L et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Barcia G et al (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44:1255–1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Carvill GL et al (2013) GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 45:1073–1076

    Article  CAS  PubMed  Google Scholar 

  8. Lemke JR et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45:1067–1072

    Article  CAS  PubMed  Google Scholar 

  9. Lesca G et al (2013) GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 45:1061–1066

    Article  CAS  PubMed  Google Scholar 

  10. Helbig I et al (2008) Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol 7:231–245

    Article  PubMed  Google Scholar 

  11. Specchio N et al (2012) Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav 25:585–592

    Article  PubMed  Google Scholar 

  12. Radhakrishnan A et al (2012) The evolving electroclinical syndrome of „epilepsy with ring chromosome 20“. Seizure 21:92–97

    Article  PubMed  Google Scholar 

  13. Battaglia A, Carey JC (2005) Seizure and EEG patterns in Wolf-Hirschhorn (4p-) syndrome. Brain Dev 27:362–364

    Article  PubMed  Google Scholar 

  14. Helbig I et al (2013) Structural genomic variation in childhood epilepsies with complex phenotypes. Eur J Hum Genet. DOI 10.1038/ejhg.2013.262

  15. Mefford HC et al (2011) Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 70:974–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mefford HC, Eichler EE (2009) Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 19:196–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Carvill GL et al (2013) Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 45:825–830

    Article  CAS  PubMed  Google Scholar 

  18. Lemke JR et al (2012) Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53:1387–1398

    Article  CAS  PubMed  Google Scholar 

  19. Krumm N et al (2013) Transmission disequilibrium of small CNVs in simplex autism. Am J Hum Genet 93:595–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Beal JC, Cherian K, Moshe SL (2012) Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 47:317–323

    Article  PubMed  Google Scholar 

  21. Nakamura K et al (2013) Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81:992–998

    Article  CAS  PubMed  Google Scholar 

  22. Depienne C et al (2012) Genes in infantile epileptic encephalopathies. In: Noebels JL et al (Hrsg) Jasper’s basic mechanisms of the epilepsies. Bethesda

  23. Epi KC et al (2013) De novo mutations in epileptic encephalopathies. Nature 501:217–221

    Article  Google Scholar 

  24. Biervert C et al (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  CAS  PubMed  Google Scholar 

  25. Heron SE et al (2002) Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 360:851–852

    Article  CAS  PubMed  Google Scholar 

  26. Weckhuysen S et al (2012) KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 71:15–25

    Article  CAS  PubMed  Google Scholar 

  27. Dravet C et al (2005) Severe myoclonic epilepsy in infancy (Dravet syndrome). In: Roger J et al (Hrsg) Epileptic syndromes in infancy, childhood and adolescence. Libbey Eurotext, Montrouge, S 77–88

  28. Harkin LA et al (2007) The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130:843–852

    Article  PubMed  Google Scholar 

  29. Ebach K et al (2005) SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics 36:210–213

    Article  CAS  PubMed  Google Scholar 

  30. Depienne C et al (2009) Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 5:e1000381

    Article  PubMed Central  PubMed  Google Scholar 

  31. Suls A et al (2013) De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet 93:967–975

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura K et al (2013) De Novo mutations in GNAO1, encoding a Galphao subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 93:496–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Helbig I (2013) Infantile spasms/Lennox-Gastaut genetics goes transatlantic, in Beyond the Ion Channel – the Channelopathist. http/www.channelopathist.net/

  34. Yu TW et al (2013) Using whole-exome sequencing to identify inherited causes of autism. Neuron 77:259–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Baumgart A et al (2013) Atypical vitamin B6 deficiency: a rare cause of unexplained neonatal and infantile epilepsies. J Child Neurol. DOI 10.1177/0883073813505354

  36. Baalen A van et al (2010) Febrile infection-related epilepsy syndrome (FIRES): a nonencephalitic encephalopathy in childhood. Epilepsia 51:1323–1328

    Article  PubMed  Google Scholar 

  37. Kovel CG de et al (2007) Association analysis of BRD2 (RING3) and epilepsy in a Dutch population. Epilepsia 48:2191–2192

    Article  PubMed  Google Scholar 

  38. Helbig I et al (2009) 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 41:160–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mefford HC et al (2010) Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 6:e1000962

    Article  PubMed Central  PubMed  Google Scholar 

  40. Suls A et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Article  CAS  PubMed  Google Scholar 

  41. Mullen SA et al (2011) Glucose transporter 1 deficiency as a treatable cause of myoclonic astatic epilepsy. Arch Neurol 68:1152–1155

    Article  PubMed  Google Scholar 

  42. Muhle H et al (2013) The role of SLC2A1 in early onset and childhood absence epilepsies. Epilepsy Res 105:229–233

    Article  CAS  PubMed  Google Scholar 

  43. Reutlinger C et al (2010) Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia 51:1870–1873

    Article  CAS  PubMed  Google Scholar 

  44. Baraban SC, Dinday MT, Hortopan GA (2013) Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 4:2410

    Article  PubMed Central  PubMed  Google Scholar 

  45. Cherepanova NS et al (2013) Presence of epilepsy-associated variants in large exome databases. J Neurogenet 27:1–4

    Article  PubMed  Google Scholar 

  46. Vassos E et al (2010) Penetrance for copy number variants associated with schizophrenia. Hum Mol Genet 19:3477–3481

    Article  CAS  PubMed  Google Scholar 

  47. Helbig I, Hodge SE, Ottman R (2013) Familial cosegregation of rare genetic variants with disease in complex disorders. Eur J Hum Genet 21:444–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Miller DT et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. I. Helbig, H. Harms, H. Muhle geben an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Helbig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbig, I., Harms, H. & Muhle, H. Genetik epileptischer Enzephalopathien. Z. Epileptol. 27, 93–99 (2014). https://doi.org/10.1007/s10309-013-0352-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-013-0352-0

Schlüsselwörter

Keywords

Navigation