Skip to main content
Log in

Simultaneous electroencephalography and functional magnetic resonance imaging

Part of clinical diagnostics?

Simultane Elektroenzephalographie und funktionelle Magnetresonanztomographie

Teil der klinischen Diagnostik?

  • Review
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Abstract

EEG-fMRI has been used in epilepsy as a tool to indentify epileptic networks involved in the generation of spikes and seizures. The method is based on the measure of blood flow changes and allows the high temporal resolution of EEG to be combined with the high spatial resolution of MRI to evaluate brain networks involved in generating intrinsic brain signals. The main focus of research in generalized epilepsies is the understanding of underlying mechanisms, while EEG-fMRI in focal epilepsies has also been evaluated as a method for focus localization in presurgical epilepsy. Despite its extensive use over recent years, EEG-fMRI in epilepsy is still not established as a routine clinical tool, as it faces many methodological challenges which complicate its interpretation. In some patients the sensitivity of the method is low due to a lack of sufficient number of interictal spikes; the correct manner for statistical analysis as well as thresholding are still being debated. The present review gives a short overview of clinical applications of EEG-fMRI in epilepsy and discusses in detail new developments in the field which may allow methodological challenges to be overcome in the future.

Zusammenfassung

In der Epilepsiediagnostik wird die simultane Aufzeichnung von EEG und fMRT verwendet, um epileptogene Netzwerke zu untersuchen, die für die Entstehung von Spikes und Anfällen verantwortlich sind. Die Methode beruht auf der Messung von Veränderungen des Blutflusses, die auf neuronale Aktivitätsänderungen folgen, und ermöglicht die Kombination der hohen zeitlichen Auflösung des EEG mit der hohen räumlichen Auflösung des MRT. Die meisten Untersuchungen bei Patienten mit generalisierten Epilepsien beschäftigen sich hauptsächlich mit der Analyse von Entstehungsmechanismen, während die Methode der EEG-fMRT evaluiert wurde, um bei Patienten mit fokalen Epilepsien im Rahmen der prächirurgischen Diagnostik eine Fokuslokalisation zu erlauben. Trotz zahlreicher Anwendungen ist die EEG-fMRT bis heute kein fester Bestandteil der routinemäßigen klinischen Diagnostik, da viele methodische Schwierigkeiten existieren, die die Interpretation der Ergebnisse erschweren. Bei einigen Patienten ist die Sensitivität der Methode niedrig, v. a. wenn keine ausreichende Anzahl von interiktalen Spikes auftritt, und bisher gibt es keine eindeutige Empfehlung für Auswahl eines Schwellenwerts bei der statistischen Analyse. Die vorliegende Übersichtsarbeit gibt einen Überblick über die Anwendungsmöglichkeiten der EEG-fMRT bei Epilepsie und diskutiert neue Entwicklungen zur Verbesserung der Methode, die in Zukunft mit einer zuverlässigeren klinischen Anwendung einhergehen könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  PubMed  CAS  Google Scholar 

  2. Allen PJ, Polizzi G, Krakow K et al (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  PubMed  CAS  Google Scholar 

  3. Bagshaw AP, Aghakhani Y, Benar CG et al (2004) EEG-fMRI of focal epileptic spikes: analysis with multiple haemodynamic functions and comparison with gadolinium-enhanced MR angiograms. Hum Brain Mapp 22:179–192

    Article  PubMed  Google Scholar 

  4. Bai X, Vestal M, Berman R et al (2010) Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci 30:5884–5893

    Article  PubMed  CAS  Google Scholar 

  5. Benar CG, Grova C, Kobayashi E et al (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30:1161–1170

    Article  PubMed  Google Scholar 

  6. Berman R, Negishi M, Vestal M et al (2010) Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia 51:2011–2022

    Article  PubMed  Google Scholar 

  7. Boegle R, Maclaren J, Zaitsev M (2010) Combining prospective motion correction and distortion correction for EPI: towards a comprehensive correction of motion and susceptibility-induced artifacts. MAGMA 23:263–273

    Article  PubMed  Google Scholar 

  8. Boor R, Jacobs J, Hinzmann A et al (2007) Combined spike-related functional MRI and multiple source analysis in the non-invasive spike localization of benign rolandic epilepsy. Clin Neurophysiol 118:901–909

    Article  PubMed  CAS  Google Scholar 

  9. Carmichael DW, Thornton JS, Rodionov R et al (2010) Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study. Neuroimage 49:379–390

    Article  PubMed  Google Scholar 

  10. Chaudhary UJ, Rodionov R, Carmichael DW et al (2012) Improving the sensitivity of EEG-fMRI studies of epileptic activity by modelling eye blinks, swallowing and other video-EEG detected physiological confounds. Neuroimage 61:1383–1393

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham CB, Goodyear BG, Badawy R et al (2012) Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans. Epilepsia 53:1636–1648

    Article  PubMed  Google Scholar 

  12. Debener S, Strobel A, Sorger B et al (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage 34:587–597

    Article  PubMed  Google Scholar 

  13. Elshoff L, Groening K, Grouiller F et al (2012) The value of EEG-fMRI and EEG source analysis in the presurgical setup of children with refractory focal epilepsy. Epilepsia 53:1597–1606

    Article  PubMed  Google Scholar 

  14. Gholipour T, Moeller F, Pittau F et al (2011) Reproducibility of interictal EEG-fMRI results in patients with epilepsy. Epilepsia 52:433–442

    Article  PubMed  Google Scholar 

  15. Gotman J (2008) Epileptic networks studied with EEG-fMRI. Epilepsia 49(Suppl 3):42–51

    Article  PubMed  Google Scholar 

  16. Gotman J, Grova C, Bagshaw A et al (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A 102:15236–15240

    Article  PubMed  CAS  Google Scholar 

  17. Grouiller F, Thornton RC, Groening K et al (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886

    Article  PubMed  Google Scholar 

  18. Hawco CS, Bagshaw AP, Lu Y et al (2007) BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage 35:1450–1458

    Article  PubMed  Google Scholar 

  19. Jacobs J, Hawco C, Kobayashi E et al (2008) Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy. Neuroimage 40:601–614

    Article  PubMed  Google Scholar 

  20. Jacobs J, Kobayashi E, Boor R et al (2007) Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 48:2068–2078

    Article  PubMed  Google Scholar 

  21. Jacobs J, LeVan P, Moeller F et al (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG-fMRI. Neuroimage 45:1220–1231

    Article  PubMed  Google Scholar 

  22. Jacobs J, Rohr A, Moeller F et al (2008) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia 49:816–825

    Article  PubMed  Google Scholar 

  23. Jacobs J, Stich J, Ramantani G et al (2012) EEG-MREG detects spike-related epileptogenic networks with high sensitivity. Abstract. Proceedings of the Organization of Human Brain Mapping, Bejing, China

  24. Kang JK, Benar C, Al Asmi A et al (2003) Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy. Neuroimage 20:1162–1170

    Article  PubMed  Google Scholar 

  25. Kobayashi E, Bagshaw AP, Benar CG et al (2006) Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 47:343–354

    Article  PubMed  Google Scholar 

  26. Kobayashi E, Bagshaw AP, Grova C et al (2006) Negative BOLD responses to epileptic spikes. Hum Brain Mapp 27:488–497

    Article  PubMed  Google Scholar 

  27. Kobayashi E, Bagshaw AP, Jansen A et al (2005) Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses. Neurology 64:1263–1266

    Article  PubMed  CAS  Google Scholar 

  28. Krakow K, Lemieux L, Messina D et al (2001) Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord 3:67–74

    PubMed  CAS  Google Scholar 

  29. Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2008) Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage 40:515–528

    Article  PubMed  CAS  Google Scholar 

  30. Laufs H, Hamandi K, Salek-Haddadi A et al (2007) Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 28:1023–1032

    Article  PubMed  Google Scholar 

  31. Lemieux L, Laufs H, Carmichael D et al (2008) Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp 29:329–345

    Article  PubMed  Google Scholar 

  32. LeVan P, Tyvaert L, Moeller F, Gotman J (2010) Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage 49:366–378

    Article  PubMed  Google Scholar 

  33. LeVan P, Maclaren J, Herbst M, Hennig J (2012) Removal of ballistocardiographic artifacts from EEG recorded inside the MR scanner using an optical motion-tracking system. Abstract Proceedings 20th Annual Meeting of the ISMRM, Melbourne, Australia

  34. Lin FH, Nummenmaa A, Witzel T et al (2012) Physiological noise reduction using volumetric functional magnetic resonance inverse imaging. Hum Brain Mapp 33:2815–2830

    Article  PubMed  Google Scholar 

  35. Lopes R, Lina JM, Fahoum F, Gotman J (2012) Detection of epileptic activity in fMRI without recording the EEG. Neuroimage 60:1867–1879

    Article  PubMed  CAS  Google Scholar 

  36. Masterton RA, Harvey AS, Archer JS et al (2010) Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS). Neuroimage 51:252–260

    Article  PubMed  Google Scholar 

  37. Moehring J, Coropceanu D, Galka A et al (2011) Improving sensitivity of EEG-fMRI studies in epilepsy: the role of sleep-specific activity. Neurosci Lett 505:211–215

    Article  PubMed  CAS  Google Scholar 

  38. Moeller F, LeVan P, Gotman J (2011) Independent component analysis (ICA) of generalized spike wave discharges in fMRI: comparison with general linear model-based EEG-fMRI. Hum Brain Mapp 32:209–217

    Article  PubMed  Google Scholar 

  39. Moeller F, LeVan P, Muhle H et al (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51:2000–2010

    Article  PubMed  Google Scholar 

  40. Moeller F, Muhle H, Wiegand G et al (2010) EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy Behav 18:313–316

    Article  PubMed  Google Scholar 

  41. Moeller F, Siebner HR, Wolff S et al (2008) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519

    Article  PubMed  Google Scholar 

  42. Moeller F, Tyvaert L, Nguyen DK et al (2009) EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology 73:2023–2030

    Article  PubMed  CAS  Google Scholar 

  43. Morgan VL, Li Y, Abou-Khalil B, Gore JC (2008) Development of 2DTCA for the detection of irregular, transient BOLD activity. Hum Brain Mapp 29:57–69

    Article  PubMed  Google Scholar 

  44. Niazy RK, Beckmann CF, Iannetti GD et al (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28:720–737

    Article  PubMed  CAS  Google Scholar 

  45. Pittau F, LeVan P, Moeller F et al (2011) Changes preceding interictal epileptic EEG abnormalities: comparison between EEG/fMRI and intracerebral EEG. Epilepsia 52:1120–1129

    Article  PubMed  Google Scholar 

  46. Posse S, Ackley E, Mutihac R et al (2012) Enhancement of temporal resolution and BOLD sensitivity in real-time fMRI using multi-slab echo-volumar imaging. Neuroimage 61:115–130

    Article  PubMed  Google Scholar 

  47. Rathakrishnan R, Moeller F, LeVan P et al (2010) BOLD signal changes preceding negative responses in EEG-fMRI in patients with focal epilepsy. Epilepsia 51:1837–1845

    Article  PubMed  Google Scholar 

  48. Siniatchkin M, Coropceanu D, Moeller F et al (2011) EEG-fMRI reveals activation of brainstem and thalamus in patients with Lennox-Gastaut syndrome. Epilepsia 52:766–774

    Article  PubMed  Google Scholar 

  49. Siniatchkin M, Baalen A van, Jacobs J et al (2007) Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia 48:2312–2321

    PubMed  Google Scholar 

  50. Srivastava G, Crottaz-Herbette S, Lau KM et al (2005) ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. Neuroimage 24:50–60

    Article  PubMed  CAS  Google Scholar 

  51. Thornton R, Laufs H, Rodionov R et al (2010) EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry 81:922–927

    Article  PubMed  Google Scholar 

  52. Thornton R, Vulliemoz S, Rodionov R et al (2011) Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann Neurol 70:822–837

    Article  PubMed  Google Scholar 

  53. Thornton RC, Rodionov R, Laufs H et al (2010) Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG. Neuroimage 53:196–205

    Article  PubMed  CAS  Google Scholar 

  54. Tyvaert L, Hawco C, Kobayashi E et al (2008) Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain 131:2042–2060

    Article  PubMed  CAS  Google Scholar 

  55. Tyvaert L, LeVan P, Dubeau F, Gotman J (2009) Noninvasive dynamic imaging of seizures in epileptic patients. Hum Brain Mapp 30:3993–4011

    Article  PubMed  Google Scholar 

  56. Zahneisen B, Hugger T, Lee KJ et al (2012) Single shot concentric shells trajectories for ultra fast fMRI. Magn Reson Med 68:484–494

    Article  PubMed  Google Scholar 

  57. Zhang J, Liu W, Chen H et al (2012) EEG-fMRI validation studies in comparison with icEEG: a review. Int J Psychophysiol 84:233–239

    Article  PubMed  Google Scholar 

  58. Zijlmans M, Huiskamp G, Hersevoort M et al (2007) EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 130:2343–2353

    Article  PubMed  Google Scholar 

  59. Zijlmans M, Huiskamp GM, Van Huffelen AC et al (2008) Detection of temporal lobe spikes: comparing nasopharyngeal, cheek and anterior temporal electrodes to simultaneous subdural recordings. Clin Neurophysiol 119:1771–1777

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest. The Königsteiner AK receives financial reimbursement for travelling and hotel expenses from Desitin for its annual meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Korinthenberg, R. Simultaneous electroencephalography and functional magnetic resonance imaging. Z. Epileptol. 26, 10–18 (2013). https://doi.org/10.1007/s10309-012-0294-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-012-0294-y

Keywords

Schlüsselwörter

Navigation