Skip to main content
Log in

Dynamic imaging of coherent sources

Identification of neuronal networks underlying frequency-associated EEG patterns

Dynamische Bildgebung von kohärenten Quellen

Darstellung neuronaler Netzwerke bei frequenzspezifischen EEG Mustern

  • Review
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Abstract

Electric source imaging allows localization of sources in the brain underlying frequency-associated EEG patterns detected on the scalp EEG. New algorithms have substantially improved the localization power of the EEG. Dynamic imaging of coherent sources (DICS) is one of these solutions. This algorithm uses a spatial filter to map power and coherence estimates of oscillatory brain activity. In this focus article, we explain the DICS method and summarize studies representing the ability of DICS to detect cortical and subcortical electric sources and neuronal networks associated with absence seizures, photoparoxysmal responses and hypsarrhythmia. By applying renormalized partial directed coherence (RPDC), the information flow between 2 sources can be described, which contributes to a better understanding of networks underlying different forms of epilepsy.

Zusammenfassung

Die elektrische Quellenbildgebung erlaubt die Lokalisation von Ursprungsorten im Gehirn, die mit frequenzspezifischen EEG-Mustern assoziiert sind. Neue Algorithmen haben dieses Lokalisationsvermögen substanziell verbessert. Die dynamische Bildgebung von kohärenten Quellen („dynamic imaging of coherent sources“, DICS) ist ein solcher Algorithmus: Das DICS verwendet einen räumlichen Filter, um „power“ und Kohärenz der oszillatorischen Hirnaktivität darzustellen. Im vorliegenden Übersichtsbeitrag wird die DICS-Methode erläutert, und DICS-Studien im Bereich der Epileptologie werden zusammengefasst: Studien zu Absencen, fotoparoxysmaler Reaktion und Hypsarrhythmie demonstrieren, dass mithilfe des DICS kortikale und subkortikale elektrische Quellen und somit neuronale Netzwerke detektiert werden können. Darüber hinaus ermöglicht die normierte partiell-gerichtete Kohärenzanalyse („renormalized partial directed coherence“, RPDC), die Richtung des Informationsflusses zwischen 2 Quellen zu beschreiben und infolgedessen die zugrunde liegenden epileptischen Netzwerke besser zu verstehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Groening K et al (2009) Combination of EEG-fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. Neuroimage 46:827–833

    Article  PubMed  Google Scholar 

  2. Vulliemoz S et al (2009) The spatio-temporal mapping of epileptic networks: combination of EEG-fMRI and EEG source imaging. Neuroimage 46:834–843

    Article  PubMed  CAS  Google Scholar 

  3. Siniatchkin M et al (2010) Neuronal networks in children with continuous spikes and waves during slow sleep. Brain 133:2798–2813

    Article  PubMed  Google Scholar 

  4. Michel CM et al (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  5. Holmes MD (2008) Dense array EEG: methodology and new hypothesis on epilepsy syndromes. Epilepsia 49:3–14

    Article  PubMed  Google Scholar 

  6. Holmes MD, Quiring J, Tucker DM (2010) Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage 49:80–93

    Article  PubMed  Google Scholar 

  7. Holmes MD, Brown M, Tucker DM (2004) Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence. Epilepsia 45:1568–1579

    Article  PubMed  Google Scholar 

  8. Gross J et al (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A 98:694–699

    Article  PubMed  CAS  Google Scholar 

  9. Gross J et al (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A 99:2299–2302

    Article  PubMed  CAS  Google Scholar 

  10. Timmermann L et al (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126(Pt 1):199–212

    Article  PubMed  Google Scholar 

  11. Timmermann L et al (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692

    Article  PubMed  CAS  Google Scholar 

  12. Sudmeyer M et al (2006) Wilson’s disease tremor is associated with magnetic resonance imaging lesions in basal ganglia structures. Mov Disord 21:2134–2139

    Article  PubMed  Google Scholar 

  13. Schnitzler A, Timmermann L, Gross J (2006) Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris 99:3–7

    Article  PubMed  Google Scholar 

  14. Moeller F et al (2012) Representation and propagation of epileptic activity in absences and generalized photoparoxysmal responses. Hum Brain Mapp doi 10.1002/hbm.22026

  15. Muthuraman M et al (2012) Source analysis of Beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography. Plosone 7(e33928):1–8

    Google Scholar 

  16. Muthuraman M, Heute U, Arning K et al (2012) Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? NeuroImage 60:1331–1339

    Article  PubMed  CAS  Google Scholar 

  17. Drongelen W et al (1996) A spatial filtering technique to detect and localize multiple sources in the brain. Brain Topogr 9:39–49

    Article  Google Scholar 

  18. Muthuraman M et al (2008) Imaging coherent sources of tremor related EEG activity in patients with Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc 2008:4716–4719

    PubMed  CAS  Google Scholar 

  19. Fuchs M et al (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712

    Article  PubMed  Google Scholar 

  20. Muthuraman M et al (2010) The central oscillatory network of essential tremor. Conf Proc IEEE Eng Med Biol Soc 2010:154–157

    PubMed  CAS  Google Scholar 

  21. Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179:121–130

    Article  PubMed  Google Scholar 

  22. Moeller F et al (2008) Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49:1510–1519

    Article  PubMed  Google Scholar 

  23. Moeller F et al (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51:2000–2010

    Article  PubMed  Google Scholar 

  24. Moeller F et al (2009) fMRI activation during spike and wave discharges evoked by photic stimulation. Neuroimage 48:682–695

    Article  PubMed  Google Scholar 

  25. Moeller F et al (2009) Mapping brain activity on the verge of a photically induced generalized tonic-clonic seizure. Epilepsia 50:1632–1637

    Article  PubMed  Google Scholar 

  26. Japaridze N et al (2012) Neuronal networks in west syndrome as revealed by source analysis and renormalized partial directed coherence. Brain Topogr (in press)

  27. Siniatchkin M et al (2007) Different neuronal networks are associated with spikes and slow activity in hypsarrhythmia. Epilepsia 48:2312–2321

    PubMed  Google Scholar 

  28. Chugani HT et al (1992) Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol 31:212–219

    Article  PubMed  CAS  Google Scholar 

  29. Hrachovy RA, Frost JD Jr, Kellaway P (1981) Sleep characteristics in infantile spasms. Neurology 31:688–693

    Article  PubMed  CAS  Google Scholar 

  30. Morimatsu Y et al (1972) Pathology in severe physical and mental disabilities in children-with special reference to 4 cases of nodding spasm. Shinkei Kenkyu No Shimpo 16:465–470

    PubMed  CAS  Google Scholar 

  31. Neville BG (1972) The origin of infantile spasms: evidence from a case of hydranencephaly. Dev Med Child Neurol 14(5):644–647

    Article  PubMed  CAS  Google Scholar 

  32. Satoh J, Mizutani T, Morimatsu Y (1986) Neuropathology of the brainstem in age-dependent epileptic encephalopathy—especially of cases with infantile spasms. Brain Dev 8:443–449

    Article  PubMed  CAS  Google Scholar 

  33. Hrachovy RA, Frost JD Jr (1989) Infantile spasms. Pediatr Clin North Am 36:311–329

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Moeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Japaridze, N., Siniatchkin, M., Muthuraman, M. et al. Dynamic imaging of coherent sources. Z. Epileptol. 26, 19–24 (2013). https://doi.org/10.1007/s10309-012-0292-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-012-0292-0

Keywords

Schlüsselwörter

Navigation