Skip to main content
Log in

Synaptisches Vesikelprotein 2A

Beteiligung an epilepsieassoziierten Prozessen und Interaktionen mit Antikonvulsiva

Synaptic vesicle protein 2A

Involvement in epilepsy-associated processes and interactions with anticonvulsants

  • Übersichten
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Levetiracetam (LEV) und Brivaracetam (BRV) binden spezifisch an das synaptische Vesikelprotein  2A (SV2A). Das SV2A unterstützt als Teil der präsynaptischen Freisetzungsmaschinerie die Exozytose synaptischer Vesikel und trägt so zur Neurotransmitterfreisetzung bei. Der genaue Mechanismus der SV2A-vermittelten antikonvulsiven Wirkung ist bisher nicht eindeutig geklärt. Eine aktivitätsabhängige Aufnahme von LEV und BRV in synaptische Vesikel mit nachfolgender Verminderung der Neurotransmitterfreisetzung ist jedoch ein plausibler Mechanismus. Im Tiermodell und beim Menschen wurde bei verschiedenen genetischen und erworbenen Epilepsien eine reduzierte SV2A-Expression beobachtet, was je nach Ausmaß eine Therapieresistenz für SV2A-Liganden erklären könnte.

Abstract

Both levetiracetam (LEV) and brivaracetam (BRV) specifically bind to the synaptic vesicle protein 2A (SV2A). Synaptic vesicle protein 2A is part of the presynaptic release machinery, supports exocytosis of synaptic vesicles and thereby contributes to neurotransmitter release. The exact mechanisms of how SV2A binding mediates anticonvulsant effects have not yet been elucidated. However, activity-dependent uptake of LEV and BRV with subsequent reduction of neurotransmitter release seems to be a plausible mechanism. A decrease in SV2A expression was observed in different forms of epilepsy in both humans and animals and this reduction could contribute to pharmacoresistance to SV2A ligands in some individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bajjalieh SM, Frantz GD, Weimann JM et al (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14:5223–5235

    PubMed  CAS  Google Scholar 

  2. Bialer M, White HS (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9:68–82

    Article  PubMed  CAS  Google Scholar 

  3. Boido D, Farisello P, Cesca F et al (2010) Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience 171:268–283

    Article  PubMed  CAS  Google Scholar 

  4. Bonifazi P, Goldin M, Picardo MA et al (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424

    Article  PubMed  CAS  Google Scholar 

  5. Bragina L, Fattorini G, Giovedí S et al (2011) Analysis of synaptotagmin, SV2, and Rab3 expression in cortical glutamatergic and GABAergic axon terminals. Front Cell Neurosci 5:32

    PubMed  CAS  Google Scholar 

  6. Brodie MJ, Covanis A, Gil-Nagel A et al (2011) Antiepileptic drug therapy: does mechanism of action matter? Epilepsy Behav 21:331–341

    Article  PubMed  Google Scholar 

  7. Carunchio I, Pieri M, Ciotti MT et al (2007) Modulation of AMPA receptors in cultured cortical neurons induced by the antiepileptic drug levetiracetam. Epilepsia 48:654–662

    Article  PubMed  CAS  Google Scholar 

  8. Chang WP, Südhof TC (2009) SV2 renders primed synaptic vesicles competent for Ca2 + -induced exocytosis. J Neurosci 29:883–897

    Article  PubMed  CAS  Google Scholar 

  9. Cohen JE, Lee PR, Chen S et al (2011) MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci U S A 108:11650–11655

    Article  PubMed  CAS  Google Scholar 

  10. Cossart R (2011) The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function. Curr Opin Neurobiol 21:160–168

    Article  PubMed  CAS  Google Scholar 

  11. Crowder KM, Gunther JM, Jones TA et al (1999) Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 96:15268–15273

    Article  PubMed  CAS  Google Scholar 

  12. Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26:1303–1313

    Article  PubMed  CAS  Google Scholar 

  13. Groot M de, Toering ST, Boer K et al (2010) Expression of synaptic vesicle protein 2A in epilepsy-associated brain tumors and in the peritumoral cortex. Neuro Oncol 12:265–273

    Article  PubMed  Google Scholar 

  14. Groot M de, Aronica E, Heimans JJ, Reijneveld JC (2011) Synaptic vesicle protein 2A predicts response to levetiracetam in patients with glioma. Neurology 77:532–539

    Article  PubMed  Google Scholar 

  15. Dong M, Yeh F, Tepp WH et al (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    Article  PubMed  CAS  Google Scholar 

  16. Douaud M, Feve K, Pituello F et al (2011) Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model. PLoS One 6:e26932

    Article  PubMed  CAS  Google Scholar 

  17. Ellender TJ, Nissen W, Colgin LL et al (2010) Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. J Neurosci 30:5979–5991

    Article  PubMed  CAS  Google Scholar 

  18. Englund M, Hyllienmark L, Brismar T (2011) Effect of valproate, lamotrigine and levetiracetam on excitability and firing properties of CA1 neurons in rat brain slices. Cell Mol Neurobiol 31:645–652

    Article  PubMed  CAS  Google Scholar 

  19. Feng G, Xiao F, Lu Y et al (2009) Down-regulation synaptic vesicle protein 2A in the anterior temporal neocortex of patients with intractable epilepsy. J Mol Neurosci 39:354–359

    Article  PubMed  CAS  Google Scholar 

  20. French JA, Costantini C, Brodsky A et al (2010) Adjunctive brivaracetam for refractory partial-onset seizures: a randomized, controlled trial. Neurology 75:519–525

    Article  PubMed  CAS  Google Scholar 

  21. Gillard M, Chatelain P, Fuks B (2006) Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol 536:102–108

    Article  PubMed  CAS  Google Scholar 

  22. Gillard M, Fuks B, Leclercq K, Matagne A (2011) Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: relationship to anti-convulsant properties. Eur J Pharmacol 664:36–44

    Article  PubMed  CAS  Google Scholar 

  23. Gower AJ, Hirsch E, Boehrer A et al (1995) Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res 22:207–213

    Article  PubMed  CAS  Google Scholar 

  24. Guy N, Teillet MA, Schuler B et al (1992) Pattern of electroencephalographic activity during light induced seizures in genetic epileptic chicken and brain chimeras. Neurosci Lett 145:55–58

    Article  PubMed  CAS  Google Scholar 

  25. Hanaya R, Kiura Y, Serikawa T et al (2011) Modulation of abnormal synaptic transmission in hippocampal CA3 neurons of spontaneously epileptic rats (SERs) by levetiracetam. Brain Res Bull 86:334–339

    Article  PubMed  CAS  Google Scholar 

  26. Hassel B, Taubøll E, Shaw R et al (2010) Region-specific changes in gene expression in rat brain after chronic treatment with levetiracetam or phenytoin. Epilepsia 51:1714–1720

    Article  PubMed  CAS  Google Scholar 

  27. Huang CW, Tsai JJ, Huang CC, Wu SN (2009) Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials. J Physiol Pharmacol 60:37–47

    PubMed  CAS  Google Scholar 

  28. Janz R, Goda Y, Geppert M et al (1999) SV2A and SV2B function as redundant Ca2 + regulators in neurotransmitter release. Neuron 24:1003–1016

    Article  PubMed  CAS  Google Scholar 

  29. Kaminski RM, Matagne A, Leclercq K et al (2008) SV2A protein is a broad-spectrum anticonvulsant target: functional correlation between protein binding and seizure protection in models of both partial and generalized epilepsy. Neuropharmacology 54:715–720

    Article  PubMed  CAS  Google Scholar 

  30. Kaminski RM, Matagne A, Patsalos PN, Klitgaard H (2009) Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia 50:387–397

    Article  PubMed  CAS  Google Scholar 

  31. Kaminski RM, Gillard M, Leclercq K et al (2009) Proepileptic phenotype of SV2A-deficient mice is associated with reduced anticonvulsant efficacy of levetiracetam. Epilepsia 50:1729–1740

    Article  PubMed  CAS  Google Scholar 

  32. Kasteleijn-Nolst Trenité DG, Genton P, Parain D et al (2007) Evaluation of brivaracetam, a novel SV2A ligand, in the photosensitivity model. Neurology 69:1027–1034

    Article  Google Scholar 

  33. Klitgaard H, Matagne A, Gobert J, Wülfert E (1998) Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 353:191–206

    Article  PubMed  CAS  Google Scholar 

  34. Kullmann DM, Lamsa KP (2007) Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci 8:687–699

    Article  PubMed  CAS  Google Scholar 

  35. Lazzell DR, Belizaire R, Thakur P et al (2004) SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem 279:52124–52131

    Article  PubMed  CAS  Google Scholar 

  36. Lee CY, Chen CC, Liou HH (2009) Levetiracetam inhibits glutamate transmission through presynaptic P/Q-type calcium channels on the granule cells of the dentate gyrus. Br J Pharmacol 158:1753–1762

    Article  PubMed  CAS  Google Scholar 

  37. Leniger T, Thöne J, Bonnet U et al (2004) Levetiracetam inhibits Na+-dependent Cl/HCO3 exchange of adult hippocampal CA3 neurons from guinea-pigs. Br J Pharmacol 142:1073–1080

    Article  PubMed  CAS  Google Scholar 

  38. Lo BW, Kyu HH, Jichici D et al (2011) Meta-analysis of randomized trials on first line and adjunctive levetiracetam. Can J Neurol Sci 38:475–486

    PubMed  Google Scholar 

  39. Löscher W, Hönack D (1993) Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 232:147–158

    Article  PubMed  Google Scholar 

  40. Lukyanetz EA, Shkryl VM, Kostyuk PG (2002) Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43:9–18

    Article  PubMed  CAS  Google Scholar 

  41. Lynch BA, Lambeng N, Nocka K et al (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 101:9861–9866

    Article  PubMed  CAS  Google Scholar 

  42. Lynch BA, Matagne A, Brännström A et al (2008) Visualization of SV2A conformations in situ by the use of protein tomography. Biochem Biophys Res Commun 375:491–495

    Article  PubMed  CAS  Google Scholar 

  43. Lynch JM, Tate SK, Kinirons P et al (2009) No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy. Epilepsy Res 83:44–51

    Article  PubMed  CAS  Google Scholar 

  44. Lyseng-Williamson KA (2011) Levetiracetam: a review of its use in epilepsy. Drugs 71:489–514

    Article  PubMed  CAS  Google Scholar 

  45. Madeja M, Margineanu DG, Gorji A et al (2003) Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45:661–671

    Article  PubMed  CAS  Google Scholar 

  46. Margineanu DG, Matagne A, Kaminski RM, Klitgaard H (2008) Effects of chronic treatment with levetiracetam on hippocampal field responses after pilocarpine-induced status epilepticus in rats. Brain Res Bull 77:282–285

    Article  PubMed  CAS  Google Scholar 

  47. Margineanu DG, Klitgaard H (2009) Brivaracetam inhibits spreading depression in rat neocortical slices in vitro. Seizure 18:453–456

    Article  PubMed  Google Scholar 

  48. Matagne A, Margineanu DG, Kenda B et al (2008) Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol 154:1662–1671

    Article  PubMed  CAS  Google Scholar 

  49. Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT (2007) Asymmetric accumulation of hippocampal 7S SNARE complexes occurs regardless of kindling paradigm. Epilepsy Res 73:266–274

    Article  PubMed  CAS  Google Scholar 

  50. Matveeva EA, Vanaman TC, Whiteheart SW, Slevin JT (2008) Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes. Epilepsia 49:1749–1758

    Article  PubMed  CAS  Google Scholar 

  51. Matveeva EA, Davis VA, Whiteheart SW et al (2012) Kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes correlates with enhanced glutamate release. Epilepsia 53:157–167

    Article  PubMed  CAS  Google Scholar 

  52. Meehan AL, Yang X, McAdams BD et al (2011) A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol 106:1227–1239

    Article  PubMed  CAS  Google Scholar 

  53. Meehan AL, Yang X, Yuan LL, Rothman SM (2012) Levetiracetam has an activity-dependent effect on inhibitory transmission. Epilepsia. DOI 10.1111/j.1528-1167.2011.03392.x

  54. Nagarkatti N, Deshpande LS, DeLorenzo RJ (2008) Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett 436:289–293

    Article  PubMed  CAS  Google Scholar 

  55. Niespodziany I, Klitgaard H, Margineanu DG (2001) Levetiracetam inhibits the high-voltage-activated Ca(2 +) current in pyramidal neurones of rat hippocampal slices. Neurosci Lett 306:5–8

    Article  PubMed  CAS  Google Scholar 

  56. Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299:C960–C967

    Article  PubMed  CAS  Google Scholar 

  57. Nowack A, Malarkey EB, Yao J et al (2011) Levetiracetam reverses synaptic deficits produced by overexpression of SV2A. PLoS One 6:e29560

    Article  PubMed  CAS  Google Scholar 

  58. Ohno Y, Ishihara S, Terada R et al (2009) Preferential increase in the hippocampal synaptic vesicle protein 2A (SV2A) by pentylenetetrazole kindling. Biochem Biophys Res Commun 390:415–420

    Article  PubMed  CAS  Google Scholar 

  59. Ohno Y, Okumura T, Terada R et al (2012) Kindling-associated SV2A expression in hilar GABAergic interneurons of the mouse dentate gyrus. Neurosci Lett 510:93–98

    Article  PubMed  CAS  Google Scholar 

  60. Oliveira AA, Almeida JP, Freitas RM et al (2007) Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 27:395–406

    Article  PubMed  CAS  Google Scholar 

  61. Paulson L, Persson A, Vonck K et al (2010) Effect of levetiracetam on hippocampal protein expression and cell proliferation in rats. Epilepsy Res 90:110–120

    Article  PubMed  CAS  Google Scholar 

  62. Perucca E, Tomson T (2011) The pharmacological treatment of epilepsy in adults. Lancet Neurol 10:446–456

    Article  PubMed  CAS  Google Scholar 

  63. Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    Article  PubMed  Google Scholar 

  64. Pyle RA, Schivell AE, Hidaka H, Bajjalieh SM (2000) Phosphorylation of synaptic vesicle protein 2 modulates binding to synaptotagmin. J Biol Chem 275:17195–17200

    Article  PubMed  CAS  Google Scholar 

  65. Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35

    Article  PubMed  Google Scholar 

  66. Rigo JM, Hans G, Nguyen L et al (2002) The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br J Pharmacol 136:659–672

    Article  PubMed  CAS  Google Scholar 

  67. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15:665–674

    Article  PubMed  CAS  Google Scholar 

  68. Schivell AE, Mochida S, Kensel-Hammes P et al (2005) SV2A and SV2C contain a unique synaptotagmin-binding site. Mol Cell Neurosci 29:56–64

    Article  PubMed  CAS  Google Scholar 

  69. Shi J, Anderson D, Lynch BA et al (2011) Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochem Soc Trans 39:1341–1347

    Article  PubMed  CAS  Google Scholar 

  70. Stafstrom CE (2010) Mechanisms of action of antiepileptic drugs: the search for synergy. Curr Opin Neurol 23:157–163

    Article  PubMed  CAS  Google Scholar 

  71. Staple JK, Morgenthaler F, Catsicas S (2000) Presynaptic heterogeneity: vive la difference. News Physiol Sci 15:45–49

    PubMed  CAS  Google Scholar 

  72. Stienen MN, Haghikia A, Dambach H et al (2011) Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol 162:491–507

    Article  PubMed  CAS  Google Scholar 

  73. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  74. Sugata S, Hanaya R, Kumafuji K et al (2011) Neuroprotective effect of levetiracetam on hippocampal sclerosis-like change in spontaneously epileptic rats. Brain Res Bull 86:36–41

    Article  PubMed  CAS  Google Scholar 

  75. Surges R, Volynski KE, Walker MC (2008) Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther Adv Neurol Disord 1:13–24

    Article  PubMed  Google Scholar 

  76. Tai KK, Truong DD (2007) Brivaracetam is superior to levetiracetam in a rat model of post-hypoxic myoclonus. J Neural Transm 114:1547–1551

    Article  PubMed  CAS  Google Scholar 

  77. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  PubMed  CAS  Google Scholar 

  78. Toering ST, Boer K, Groot M de et al (2009) Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia 50:1409–1418

    Article  PubMed  CAS  Google Scholar 

  79. Vliet EA van, Aronica E, Redeker S et al (2009) Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia 50:422–433

    Article  PubMed  Google Scholar 

  80. Winden KD, Karsten SL, Bragin A et al (2011) A systems level, functional genomics analysis of chronic epilepsy. PLoS One 6:e20763

    Article  PubMed  CAS  Google Scholar 

  81. Xu J, Pang ZP, Shin OH, Südhof TC (2009) Synaptotagmin-1 functions as a Ca2 + sensor for spontaneous release. Nat Neurosci 12:759–766

    Article  PubMed  CAS  Google Scholar 

  82. Yao J, Bajjalieh SM (2008) Synaptic vesicle protein 2 binds adenine nucleotides. J Biol Chem 283:20628–20634

    Article  PubMed  CAS  Google Scholar 

  83. Yao J, Nowack A, Kensel-Hammes P et al (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30:5569–5578

    Article  PubMed  CAS  Google Scholar 

  84. Yeh FL, Dong M, Yao J et al (2010) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6:e1001207

    Article  PubMed  Google Scholar 

  85. Zona C, Pieri M, Carunchio I et al (2010) Brivaracetam (ucb 34714) inhibits Na(+) current in rat cortical neurons in culture. Epilepsy Res 88:46–54

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: R.S. hat ein Referentenhonorar sowie eine gesponserte Kongressteilnahme von EISAI erhalten, erhält ein Honorar als Berater für UCB und hat ein Otfrid-Foerster-Stipendium der Deutschen Gesellschaft für Epileptologie erhalten, mit dem experimentelle Arbeiten zum Thema SV2A und LEV durchgeführt wurden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Surges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surges, R., Schoch, S. & Elger, C. Synaptisches Vesikelprotein 2A. Z. Epileptol. 25, 215–221 (2012). https://doi.org/10.1007/s10309-012-0249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-012-0249-3

Schlüsselwörter

Keywords

Navigation