Skip to main content

Advertisement

Log in

Klinischer Stellenwert der Quellenanalyse epileptischer Aktivität

Clinical importance of source analysis of epileptic activity

  • Übersicht
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Das MEG liefert als nichtinvasives Verfahren zusätzliche Information im Rahmen der prächirurgischen Epilepsiediagnostik. Dies konnte in zahlreichen Studien durch Vergleich zwischen invasivem EEG und Operations-Outcome belegt werden. Das MEG hat den Nachteil, dass es meist auf interiktale Analysen beschränkt ist. Obwohl das EEG als Routinemethode regelhaft auch iktal vor epilepsiechirurgischen Eingriffen abgeleitet wird, ist die Datenlage bezüglich der EEG-Quellenanalyse dünner. Dennoch sind die bisherigen Studienergebnisse vielversprechend. Eine Kombination von MEG und EEG bietet wegen der teilweise komplementären Information Vorteile gegenüber der Einzelanalyse. Dieser Beitrag fasst die Studienlage zur prächirurgischen Diagnostik mithilfe der Quellenanalysen in MEG und Oberflächen-EEG zusammen und geht insbesondere auf die klinische Relevanz der Methoden ein.

Abstract

As a non-invasive tool MEG provides additional information for presurgical epilepsy diagnostics. Numerous studies have demonstrated its applicability and impact in comparison to invasive EEG and postsurgical outcome. As a shortcoming MEG is usually limited to the analysis of interictal activity. Although ictal EEG recording is mandatory for surgical decision-making, there are less data on EEG source analysis and its clinical implications; however, the results from EEG studies were promising. Therefore, MEG and EEG should be combined because the partially complementary information is an advantage compared to one analysis alone. This article summarizes the situation with respect to studies on preclinical diagnostics using source analysis in MEG and surface EEG combined and in particular discusses the clinical relevance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Assaf BA, Ebersole JS (1997) Continuous source imaging of scalp ictal rhythms in temporal lobe epilepsy. Epilepsia 38:1114–1123

    Article  PubMed  CAS  Google Scholar 

  2. Assaf BA, Ebersole JS (1999) Visual and quantitative ictal EEG predictors of outcome after temporal lobectomy. Epilepsia 40:52–61

    Article  PubMed  CAS  Google Scholar 

  3. Assaf BA, Karkar KM, Laxer KD et al (2003) Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia 44:1320–1327

    Article  PubMed  Google Scholar 

  4. Bast T (2011) Methodik der Quellenanalyse in EEG und MEG bei fokalen Epilepsien. Z Epileptol 4:269–278

    Article  Google Scholar 

  5. Bast T, Boppel T, Rupp A et al (2006) Non-invasive source localization of interictal EEG spikes: effects of signal-to-noise ratio and averaging. J Clin Neurophysiol 23:487–497

    Article  PubMed  Google Scholar 

  6. Bast T, Huppertz HJ, Bilic S et al (2007) Iktale Magnetoenzephalographie (MEG) und modernste multimodale Diagnostik führen zur Operationsindikation nach 40 Jahren pharmakorefraktärem Verlauf einer scheinbar kryptogenen Frontallappenepilepsie. Z Epileptol 20:41–48

    Article  Google Scholar 

  7. Bast T, Oezkan O, Rona S et al (2004) EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia 45:621–631

    Article  PubMed  Google Scholar 

  8. Bast T, Ramantani G, Boppel T et al (2005) Source analysis of interictal spikes in polymicrogyria: loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation. Neuroimage 25:1232–1241

    Article  PubMed  Google Scholar 

  9. Baumgartner C, Pataraia E (2006) Revisiting the role of magnetoencephalography in epilepsy. Curr Opin Neurol 19:181–186

    Article  PubMed  Google Scholar 

  10. Boon P, D’Have M, Vanrumste B et al (2002) Ictal source localization in presurgical patients with refractory epilepsy. J Clin Neurophysiol 19:461–468

    Article  PubMed  Google Scholar 

  11. Burneo JG, Bebin M, Kuzniecky RI et al (2004) Electroclinical and magnetoencephalographic studies in epilepsy patients with polymicrogyria. Epilepsy Res 62:125–133

    Article  PubMed  Google Scholar 

  12. Brodbeck V, Spinelli L, Lascano AM et al (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134:2887–2897

    Article  PubMed  Google Scholar 

  13. Cosandier-Rimele D, Badier JM, Chauvel P et al (2007) A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy. IEEE Trans Biomed Eng 54:380–388

    Article  PubMed  Google Scholar 

  14. Cosandier-Rimele D, Merlet I, Badier JM et al (2005) The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy. Neuroimage 42:135–146

    Article  Google Scholar 

  15. Jongh A de, Munck JC de, Gonçalves SI et al (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Article  PubMed  Google Scholar 

  16. Dümpelmann M, Ball T, Schulze-Bonhage A (2011) sLORETA allows reliable distributed source reconstruction based on subdural strip and grid recordings. Hum Brain Mapp, doi:10.1002/hbm.21276)

  17. Eliashiv DS, Elsas SM, Squires K et al (2002) Ictal magnetic source imaging as a localizing tool in parital epilepsy. Neurology 59:1600–1610

    PubMed  CAS  Google Scholar 

  18. Fischer MJ, Scheler G, Stefan H (2005) Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 128:153–157

    Article  PubMed  Google Scholar 

  19. Gotman J, Kobayashi E, Bagshaw AP et al (2006) Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 23:906–920

    Article  PubMed  Google Scholar 

  20. Groening K, Brodbeck V, Moeller F et al (2009) Combination of EEG-fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. Neuroimage 46:827–833

    Article  PubMed  Google Scholar 

  21. Holmes MD, Brown M, Tucker DM et al (2008) Localization of extratemporal seizure with noninvasive dense-array EEG. Comparison with intracranial recordings. Pediatr Neurosurg 44:474–479

    Article  PubMed  Google Scholar 

  22. Holmes MD, Tucker DM, Quiring JM et al (2010) Comparing noninvasive dense array and intracranial electroencephalographyfor localization of seizures. Neurosurgery 66:354–362

    Article  PubMed  Google Scholar 

  23. Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

    Article  PubMed  Google Scholar 

  24. Ishii R, Canuet L, Ochi A et al (2008) Spatially filtered magnetoencephalography compared with electrocorticography to identify intrinsically epileptogenic focal cortical dysplasia. Epilepsy Res 81:228–232

    Article  PubMed  Google Scholar 

  25. Iwasaki M, Pestana E, Burgess RC et al (2005) Detection of epileptiform activity by human interpreters: blinded comparison between electroencephalography and magnetoencephalography. Epilepsia 46:59–68

    Article  PubMed  Google Scholar 

  26. Jansen FE, Huiskamp G, Huffelen AC van et al (2006) Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia 47:108–114

    Article  PubMed  Google Scholar 

  27. Kamimura T, Tohyama J, Oishi M et al (2006) Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia 47:991–997

    Article  PubMed  Google Scholar 

  28. Kirsch HE, Mantle M, Nagarajan SS (2007) Concordance between routine interictal magnetoencephalography and simultaneous scalp electroencephalography in a sample of patients with epilepsy. J Clin Neurophysiol 24:215–231

    Article  PubMed  Google Scholar 

  29. Knake S, Halgren E, Shiraishi H et al (2006) The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

    Article  PubMed  CAS  Google Scholar 

  30. Knowlton RC, Elgavish RA, Bartolucci A et al (2008) Functional imaging: II. Prediction of epilepsy surgery outcome. Ann Neurol 64:35–41

    Article  PubMed  Google Scholar 

  31. Knowlton RC, Elgavish RA, Limdi N et al (2008) Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol 64:25–34

    Article  PubMed  Google Scholar 

  32. Laufs H, Duncan JS (2007) Electroencephalography/functional MRI in human epilepsy: what it currently can and cannot do. Curr Opin Neurol 20:417–423

    Article  PubMed  Google Scholar 

  33. Leijten FSS, Huiskamp GJM (2008) Interictal electromagnetic source imaging in focal epilepsy: practices, results and recommendations. Curr Opin Neurol 21:437–445

    Article  PubMed  Google Scholar 

  34. Leijten FSS, Huiskamp GJM, Hilgersom I et al (2003) High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 20:227–238

    Article  PubMed  Google Scholar 

  35. Lin YY, Shih YH, Chang KP et al (2003) MEG localization of rolandic spikes with respect to SI and SII cortices in benign rolandic epilepsy. Neuroimage 20:2051–2061

    Article  PubMed  CAS  Google Scholar 

  36. Mamelak AN, Lopez N, Akhtari M et al (2002) Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg 97:865–873

    Article  PubMed  Google Scholar 

  37. Merlet I, Gotman J (2001) Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clin Neurophysiol 112:414–430

    Article  PubMed  CAS  Google Scholar 

  38. Merlet I, Paetau R, Garcia-Larrea L et al (1997) Apparent asynchrony between interictal electric and magnetic spikes. Neuroreport 8:1071–1076

    Article  PubMed  CAS  Google Scholar 

  39. Michel CM, Lantz G, Spinelli L et al (2004) 128-channel EEG source imaging in epilepsy: clinical yield and localization precision. J Clin Neurophysiol 21:71–83

    Article  PubMed  Google Scholar 

  40. Michel CM, Murray MM, Lantz G et al (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  41. Mikuni N, Nagamine T, Ikeda A et al (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. Neuroimage 5:298–306

    Article  PubMed  CAS  Google Scholar 

  42. Mohamed IS, Otsubo H, Ochi A et al (2007) Utility of magnetoencephalography in the evaluation of recurrent seizures after epilepsy surgery. Epilepsia 48:2150–2159

    Article  PubMed  Google Scholar 

  43. Moore KR, Funke ME, Constantino T et al (2002) Magnetoencephalographically directed review of high-spatial-resolution surface-coil MR images improves lesion detection in patients with extratemporal epilepsy. Radiology 225:880–887

    Article  PubMed  Google Scholar 

  44. Morioka T, Nishio S, Hisada K et al (2000) Neuromagnetic assessment of epileptogenicity in cerebral arteriovenous malformation. Neurosurg Rev 23:206–212

    Article  PubMed  CAS  Google Scholar 

  45. Morioka T, Nishio S, Ishibashi H et al (1999) Intrinsic epileptogenicity of focal cortical dysplasia as revealed by magnetoencephalography and electrocorticography. Epilepsy Res 33:177–187

    Article  PubMed  CAS  Google Scholar 

  46. Ossenblok P, Munck JC de, Colon A et al (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Article  PubMed  Google Scholar 

  47. Papanicolaou AC, Pataraia E, Billingsley-Marschall R et al (2005) Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol 22:231–237

    Article  PubMed  Google Scholar 

  48. Pataraia E, Simos PG, Castillo EM et al (2004) Reorganization of language-specific cortex in patients with lesions or mesial temporal epilepsy. Neurology 63:1825–1832

    PubMed  CAS  Google Scholar 

  49. Patt S, Steenbeck J, Hochstetter A et al (2000) Source localization and possible causes of interictal epileptic activity in tumor-associated epilepsy. Neurobiol Dis 7:260–269

    Article  PubMed  CAS  Google Scholar 

  50. Paulini A, Fischer M, Rampp S et al (2007) Lobar localization information in epilepsy patients: MEG – a useful tool in routine presurgical diagnosis. Epilepsy Res 76:124–130

    Article  PubMed  Google Scholar 

  51. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49:201–218

    Article  PubMed  Google Scholar 

  52. RamachandranNair R, Otsubo H, Shroff MM et al (2007) MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings. Epilepsia 48:149–157

    Article  PubMed  Google Scholar 

  53. Ramantani G, Scherg G, Boor R et al (2006) MEG vs. EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 23:498–508

    Article  PubMed  Google Scholar 

  54. Ray A, Tao JX, Hawes-Ebersole SM et al (2007) Localizing value of scalp EEG spikes: a simultaneous scalp and intracranial study. Clin Neurophysiol 118:69–79

    Article  PubMed  Google Scholar 

  55. Siniatchkin M, Groening K, Moehring J et al (2010) Neuronal networks in children with continuous spikes and waves during slow sleep. Brain 133:2798–2813

    Article  PubMed  Google Scholar 

  56. Sperli F, Spinelli L, Seeck M et al (2006) EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47:981–990

    Article  PubMed  Google Scholar 

  57. Stefan H, Hummel C, Scheler A et al (2003) Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases. Brain 126:2396–2405

    Article  PubMed  CAS  Google Scholar 

  58. Stefan H, Scheler G, Hummel C et al (2004) Magnetoencephalography (MEG) predicts focal epileptogenicity in cavernomas. J Neurol Neurosurg Psychiatry 75:1309–1313

    Article  PubMed  CAS  Google Scholar 

  59. Sutherling WW, Mamelak AN, Thyerlei D et al (2008) Influence of magnetic source imaging for planning intracranial EEG in epilepsy. Neurology 71:990–996

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka N, Hämäläinen MS, Ahlfors SP et al (2010) Propagation of epileptic spikes reconstructed from spatiotemporal magnetoencephalographic and electroencephalographic source analysis. Neuroimage 50:217–222

    Article  PubMed  Google Scholar 

  61. Tanaka E, Kida T, Inui K et al (2009) Change-driven cortical activation in multisensory environments: an MEG study. Neuroimage 48:464–474

    Article  PubMed  Google Scholar 

  62. Tilz C, Hummel C, Kettenmann B et al (2002) Ictal onset localization of epileptic seizures by magnetoencephalography. Acta Neurol Scand 106:190–195

    Article  PubMed  CAS  Google Scholar 

  63. Widjaja E, Otsubo H, Raybaud C et al (2008) Characteristics of MEG and MRI between Taylor’s focal cortical dysplasia (type II) and other cortical dysplasia: surgical outcome after complete resection of MEG spike source and MR lesion in pediatric cortical dysplasia. Epilepsy Res 82:147–155

    Article  PubMed  Google Scholar 

  64. Xiao Z, Xiang J, Holowka S et al (2006) Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr Radiol 36:16–21

    Article  PubMed  Google Scholar 

  65. Yoshinaga H, Ohtsuka Y, Watanabe Y et al (2004) Ictal MEG in two children with partial seizures. Brain Dev 26:403–408

    Article  PubMed  Google Scholar 

  66. Zijlmans M, Huiskamp GM, Leijten FS et al (2002) Modality-specific spike identification in simultaneous magnetoencephalography/electroencephalography: a methodological approach. J Clin Neurophysiol 19:183–191

    Article  PubMed  Google Scholar 

  67. Zumsteg D, Friedman A, Wennberg RA, Wieser HG (2005) Source localization of mesial temporal interictal epileptiform discharges: correlation with intracranial foramen ovale electrode recordings. Clin Neurophysiol 116:2810-2818

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bast, T. Klinischer Stellenwert der Quellenanalyse epileptischer Aktivität. Z. Epileptol. 25, 26–35 (2012). https://doi.org/10.1007/s10309-011-0232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-011-0232-4

Schlüsselwörter

Keywords

Navigation