Skip to main content
Log in

Pharmakogenetik

Neue Wege in der Epilepsietherapie?

Pharmacogenetics

New options in the treatment of epilepsy?

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Für die Therapie von epileptischen Anfällen stehen mehr als 20 Medikamente zur Verfügung. Es gibt jedoch bisher kaum Prädiktoren für das Ansprechen des individuellen Patienten auf eine bestimmte Therapie oder das Auftreten von u. U. schwerwiegenden Nebenwirkungen. Da die Medikamente zumindest bei den fokalen Epilepsien annähernd gleich gut wirksam sind, richtet sich die Auswahl überwiegend nach den Nebenwirkungen, indem man meist allgemein gut verträgliche Präparate auswählt, und nach Komorbiditäten. Für den individuellen Patienten kann das optimale Medikament derzeit nicht vor Beginn der Therapie ausgewählt werden. Da nur etwa die Hälfte aller Epilepsiepatienten auf das erste verabreichte Medikament hin anfallsfrei werden und 30% trotz Medikamenteneinnahme weiter Anfälle haben, wäre es sehr hilfreich, prädiktive Faktoren zu kennen, um das richtige Medikament bereits vorab zu bestimmen und ggf. alternative Therapien frühzeitig in die Behandlung einzubeziehen. Die Genetik bietet hier eine Chance, die individuelle Prädisposition eines Patienten in Bezug auf pharmakologische Parameter und das Auftreten von Nebenwirkungen zu erfassen. Während in anderen Bereichen, wie z. B. der Onkologie, bereits individuelle Therapiestrategien anhand genetischer Untersuchungen durchgeführt werden, gibt es im Bereich der Epilepsie nur 2 Beispiele, von denen eines klinische Bedeutung hat: die Vorhersage des Auftretens von schweren allergischen Hautreaktionen unter Carbamazepin. Neue genomweite genetische Methoden erlauben nun die Identifikation von sowohl häufigen als auch seltenen genetischen Faktoren, die auf die antikonvulsive Pharmakotherapie Einfluss haben könnten. Die Ziele solcher Untersuchungen sind zum einen das Verständnis der Mechanismen von individuellen Reaktionen auf Medikamente und zum anderen eine personalisierte, d. h. optimal auf den einzelnen Patienten abgestimmte Epilepsietherapie.

Abstract

More than 20 different antiepileptic drugs (AED) are available for the treatment of epileptic seizures. However, there are hardly any predictors for an individual’s response to a certain therapy or the occurrence of severe adverse events. Since at least for focal epilepsies all available AEDs are about equally effective, the choice of the right AED currently depends on a generally low side effect profile or comorbidities and interactions with other drugs. At the moment, the right drug for the individual patient cannot be predicted prior to starting therapy. Since only 50% of all epilepsy patients respond to the first AED and 30% continue to have seizures despite therapy with available AEDs, predictive factors would be very helpful to determine the right AED or consider alternative treatments, such as epilepsy surgery, early on. The primary aim of pharmacogenetics is to tailor treatment to individual patients based on their genomic data. Compared to other medical fields (e.g. oncology) where individual therapeutic strategies are already based on genetic factors, only one example of clinical relevance is known for epilepsy therapy: the prediction of carbamazepine-induced severe allergic skin reactions. New genome-wide genetic methods now permit the identification of common and rare genetic factors, which could influence treatment with AEDs. The aims of such investigations are, on the one hand, to understand the mechanisms of pharmacoresponse and nonresponse and, on the other, to enable a personalized therapy that is optimized for each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Weber YG, Lerche H (2008) Genetic mechanisms in idiopathic epilepsies. Dev Med Child Neurol 50:648–654

    Article  PubMed  Google Scholar 

  2. Claes L, Del-Favero J, Ceulemans B et al (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68:1327–1332

    Article  PubMed  CAS  Google Scholar 

  3. Yu FH, Mantegazza M, Westenbroek RE et al (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149

    Article  PubMed  CAS  Google Scholar 

  4. Ogiwara I, Miyamoto H, Morita N et al (2007) Na(v)1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 27:5903–5914

    Article  PubMed  CAS  Google Scholar 

  5. Guerrini R, Dravet C, Genton P et al (1998) Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39:508–512

    Article  PubMed  CAS  Google Scholar 

  6. Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31:545–552

    Article  PubMed  Google Scholar 

  7. Weber YG, Lerche H (2009) Genetics of paroxysmal dyskinesias. Curr Neurol Neurosci Rep 9:206–211

    Article  PubMed  CAS  Google Scholar 

  8. Pons R, Collins A, Rotstein M et al (2010) The spectrum of movement disorders in Glut-1 deficiency. Mov Disord 25:275–281

    Article  PubMed  Google Scholar 

  9. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–419

    Article  PubMed  CAS  Google Scholar 

  10. Uebachs M, Opitz T, Royeck M et al (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489–8501

    Article  PubMed  CAS  Google Scholar 

  11. Remy S, Gabriel S, Urban BW et al (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53:469–479

    Article  PubMed  CAS  Google Scholar 

  12. Berg AT, Berkovic SF, Brodi MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  13. Marson AG, Al-Kharusi AM, Alwaidh M et al (2007) The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 369:1000–1026

    Article  PubMed  CAS  Google Scholar 

  14. Glauser TA, Cnaan A, Shinnar S et al (2010) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 362:790–799

    Article  PubMed  CAS  Google Scholar 

  15. Tate SK, Depondt C, Sisodiya SM et al (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 102:5507–5512

    Article  PubMed  CAS  Google Scholar 

  16. Siddiqui A, Kerb R, Weale ME et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348:1442–1448

    Article  PubMed  CAS  Google Scholar 

  17. Haerian BS, Roslan H, Raymond AA et al (2010) ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure 19:339–346

    Article  PubMed  CAS  Google Scholar 

  18. Potschka H (2010) Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 51:1333–1347

    Article  PubMed  CAS  Google Scholar 

  19. Kasperaviciūte D, Catarino CB, Heinzen EL et al (2010) Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 133:2136–2147

    Article  PubMed  Google Scholar 

  20. Löscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50:1–23

    Article  PubMed  Google Scholar 

  21. Klotz U (2007) The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet 46:271–279

    Article  PubMed  CAS  Google Scholar 

  22. Chung WH, Hung SI, Hong HS et al (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486

    Article  PubMed  CAS  Google Scholar 

  23. Chen P, Lin JJ, Lu CS et al (2011) Carbamazepine-induced toxic effects and HLAB*1502 screening in Taiwan. N Engl J Med 364:1126–1133

    Article  PubMed  CAS  Google Scholar 

  24. Franciotta D, Kwan P, Perucca E (2009) Genetic basis for idiosyncratic reactions to antiepileptic drugs. Curr Opin Neurol 22:144–149. Franciotta et al. 2009 rev

    Article  PubMed  Google Scholar 

  25. Hung SI, Chung WH, Liu ZS et al (2010) Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11:349–356

    Article  PubMed  CAS  Google Scholar 

  26. Dean J, Robertson Z, Reid V et al (2007) Fetal anticonvulsant syndromes and polymorphisms in MTHFR, MTR, and MTRR. Am J Med Genet A 143A:2303–2311

    Article  PubMed  CAS  Google Scholar 

  27. Kirchheiner J, Schwab M (2008) Heterogeneity of drug responses and individualization of therapy, Kap. 16. In: Waldman & Terzic (Hrsg) Pharmacology and therapeutics principles to practice. Elsevier, Philadelphia, S 225–238

  28. Ashley EA, Butte AJ, Wheeler MT et al (2010) Clinical assessment incorporating a personal genome. Lancet 375:1525–1535

    Article  PubMed  CAS  Google Scholar 

  29. Kinirons P, Cavalleri GL, Singh R et al (2006) A pharmacogenetic exploration of vigabatrin-induced visual field constriction. Epilepsy Res 70:144–152

    Article  PubMed  CAS  Google Scholar 

  30. Ueda K, Ishitsu T, Seo T et al (2007) Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics 8:435–442

    Article  PubMed  CAS  Google Scholar 

  31. McCormack M, Alfirevic A, Bourgeois S et al (2011) HLA-A*3101 and carbamazepnie-induced hypersensitivity reactions in Europeans. N Engl J Med 364:1134–43

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt, für keinen der Autoren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, F., Zimprich, F., Sisodiya, S. et al. Pharmakogenetik. Z. Epileptol. 24, 123–127 (2011). https://doi.org/10.1007/s10309-011-0172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-011-0172-z

Schlüsselwörter

Keywords

Navigation