Skip to main content
Log in

Epigenetische Pathomechanismen der Epileptogenese

Epigenetic pathomechanisms in epileptogenesis

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Viele Läsionen im Gehirn können zu einer Epilepsie führen. Allerdings sind weder Anfallsbeginn noch Krankheitsverlauf oder das Ansprechen der antikonvulsiven Therapie individuell vorhersehbar. Auch die Pathomechanismen der Epileptogenese sind bislang wenig bekannt. Die verfügbaren und neu entwickelten Antiepileptika zielen meistens auf die Hemmung der Membranerregbarkeit oder der synaptischen Übertragung, ohne dass sich wirklich neue Möglichkeiten für die Behandlung pharmakoresistenter Epilepsien eröffnet haben. Ganz neue Impulse in dieser Hinsicht erhofft man sich durch die „epigenetische Medizin“. „Epigenetik“ wird als diejenige Veränderung der Erbsubstanz definiert, die Information unabhängig von der DNA-Sequenz engrammiert, z. B. durch DNA- oder Histonmethylierung. Epigenetische Mechanismen stellen somit fundamentale Regulationsprozesse für die zeitliche und räumliche Expression spezifischer Gene im Zentralnervensystem dar und spielen bei der Gehirnentwicklung und Alterung, aber auch bei synaptischer Plastizität sowie Gedächtnisbildung eine wichtige Rolle. Darüber hinaus wurden aberrante epigenetische Modifikationen bei zahlreichen neurologischen Erkrankungen beobachtet, wie z. B. Schizophrenie oder spinale Muskelatrophie. Die Autoren postulieren, dass epigenetische Pathomechanismen auch der Entstehung und Progression epileptischer Anfälle zugrunde liegen. Die systematische wissenschaftliche Untersuchung epigenetischer Pathomechanismen kann zudem neue Strategien für die Entwicklung pharmakologisch relevanter Zielmoleküle hervorbringen, und dieser Ansatz wird durch das neue europäische Verbundprojekt EpiGENet im Rahmen des Programms EuroEPINOMICS gefördert.

Abstract

Recent studies point to a pathogenic role of epigenetic chromatin modifications during epileptogenesis. Epigenetic mechanisms are covalent posttranslational modifications of histone proteins and DNA, which can produce lasting alterations in chromatin structure and gene expression. They are increasingly recognized as fundamental regulatory processes in central nervous system development, synaptic plasticity, and memory, and also play a role in neurological disorders, such as schizophrenia or spinal muscular atrophy. The authors propose that the “methylation hypothesis” addresses the intriguing issue of seizure-induced epigenetic chromatin modifications, which aggravate the epileptogenic condition by targeting candidate epileptogenesis gene expression. Unravelling epigenetic pathomechanisms will open also new strategies to identify molecular targets for pharmacological treatment in epilepsies. This project will be supported by EpiGENet, one of four consortia from the newly established European EuroEPINOMICS initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9:357–369

    Article  PubMed  CAS  Google Scholar 

  2. Becker AJ, Chen J, Zien A et al (2003) Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy. Eur J Neurosci 18:2792–2802

    Article  PubMed  Google Scholar 

  3. Becker AJ, Pitsch J, Sochivko D et al (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28:13341–13353

    Article  PubMed  CAS  Google Scholar 

  4. Bernard C, Anderson A, Becker A et al (2004) Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535

    Article  PubMed  CAS  Google Scholar 

  5. Blumcke I (2009) Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 15:34–39

    Article  PubMed  Google Scholar 

  6. Blumcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211

    PubMed  Google Scholar 

  7. Bough KJ, Wetherington J, Hassel B et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60:223–235

    Article  PubMed  CAS  Google Scholar 

  8. Brichta L, Hofmann Y, Hahnen E et al (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  PubMed  CAS  Google Scholar 

  9. Chen Z, Karaplis AC, Ackerman SL et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  PubMed  CAS  Google Scholar 

  10. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    Article  PubMed  CAS  Google Scholar 

  11. Feinberg AP (2007) Phenotypic plasticity and the epigenetics ofhuman disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  12. Frisch C, Husch K, Angenstein F et al (2009) Dose-dependent memory effects and cerebral volume changes after in utero exposure to valproate in the rat. Epilepsia 50:1432–1441

    Article  PubMed  CAS  Google Scholar 

  13. Garbes L, Riessland M, Holker I et al (2009) LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum Mol Genet 18:3645–3658

    Article  PubMed  CAS  Google Scholar 

  14. Garriga-Canut M, Schoenike B, Qazi R et al (2006) 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387

    Article  PubMed  CAS  Google Scholar 

  15. Göttlicher M (2004) Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann Hematol 83(Suppl 1):S91–S92

    PubMed  Google Scholar 

  16. Grayson DR, Jia X, Chen Y et al (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102:9341–9346

    Article  PubMed  CAS  Google Scholar 

  17. Haas CA, Dudeck O, Kirsch M et al (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    PubMed  CAS  Google Scholar 

  18. Hahnen E, Hauke J, Trankle C et al (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17:169–184

    Article  PubMed  CAS  Google Scholar 

  19. Harden CL, Hopp J, Ting TY et al (2009) Management issues for women with epilepsy – Focus on pregnancy (an evidence-based review): I. Obstetrical complications and change in seizure frequency: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia 50:1229–1236

    Article  PubMed  Google Scholar 

  20. Harikrishnan KN, Chow MZ, Baker EK et al (2005) Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet 37:254–264

    Article  PubMed  CAS  Google Scholar 

  21. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  PubMed  CAS  Google Scholar 

  22. Huang Y, Doherty JJ, Dingledine R (2002) Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci 22:8422–8428

    PubMed  CAS  Google Scholar 

  23. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  24. Kobow K, Jeske I, Hildebrandt M et al (2009) Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol 68:356–364

    Article  PubMed  CAS  Google Scholar 

  25. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  PubMed  CAS  Google Scholar 

  26. Ma DK, Marchetto MC, Guo JU et al (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344

    Article  PubMed  CAS  Google Scholar 

  27. Pogribny IP, Karpf AR, James SR et al (2008) Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34

    Article  PubMed  CAS  Google Scholar 

  28. Stern LL, Mason JB, Selhub J, Choi SW (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 9:849–853

    PubMed  CAS  Google Scholar 

  29. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  PubMed  CAS  Google Scholar 

  30. Su H, Sochivko D, Becker A et al (2002) Upregulation of a T-type Ca2+ channel causes a long-lasting modification of neuronal firing mode after status epilepticus. J Neurosci 22:3645–3655

    PubMed  CAS  Google Scholar 

  31. Tsankova NM, Kumar A, Nestler EJ (2004) Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24:5603–5610

    Article  PubMed  CAS  Google Scholar 

  32. Urdinguio RG, Sanchez-Mut JV, Esteller M (2009) Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 8:1056–1072

    Article  PubMed  CAS  Google Scholar 

  33. Waterland RA (2003) Do maternal methyl supplements in mice affect DNA methylation of offspring? J Nutr 133:238; author reply 239

    PubMed  CAS  Google Scholar 

  34. Zhao S, Chai X, Bock HH et al (2006) Rescue of the reeler phenotype in the dentate gyrus by wild-type coculture is mediated by lipoprotein receptors for reelin and disabled 1. J Comp Neurol 495:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Es liegen keine Interessenkonflikte der Autoren vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Blümcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümcke, I., Kobow, K. & Becker, A. Epigenetische Pathomechanismen der Epileptogenese. Z. Epileptol. 24, 118–122 (2011). https://doi.org/10.1007/s10309-011-0171-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-011-0171-0

Schlüsselwörter

Keywords

Navigation