Skip to main content
Log in

Transporterhypothese der Pharmakoresistenz von Epilepsien

Transporter hypothesis of pharmacoresistant epilepsy

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

An der Blut-Hirn-Schranke können Effluxtransporter den Übertritt von Wirkstoffen in das Gehirn effizient limitieren. Im epileptischen Gehirn kann infolge der Anfallsaktivität die Expression dieser Transportsysteme erhöht sein. Mit der sog. Transporterhypothese pharmakoresistenter Epilepsie wird postuliert, dass die Überexpression der Transporter die Gehirngängigkeit und damit die Wirksamkeit von Antiepileptika einschränken kann. Experimentelle Befunde aus Nagermodellen bestätigen die Hypothese in verschiedener Hinsicht. Durch Anwendung bildgebender Verfahren mit Darstellung der Funktion des Effluxtransporters P-Glykoprotein wird derzeit versucht, zu prüfen, ob sich eine Korrelation zwischen der Transporterfunktion und der Pharmakosensitivität bei Epilepsiepatienten darstellen lässt. Die weiterführende Prüfung der Hypothese ist von besonderem Interesse, da die Prävention der Transporterhochregulation ein interessantes neues therapeutisches Konzept bieten könnte.

Abstract

Efflux transporters at the blood–brain barrier can efficaciously limit the penetration of various compounds into the brain. In the epileptic brain, seizure activity causes an up-regulation of efflux transporters. The transporter hypothesis suggests that this up-regulation can limit brain access to and efficacy of antiepileptic drugs. This hypothesis has been substantiated by experimental findings from rodent models. Based on imaging analysis aiming to determine the function of the efflux transporter P-glycoprotein, it is currently being tested whether a correlation exists between transporter function and pharmacosensitivity in patients with epilepsy. Further validation of the hypothesis is of particular interest as the prevention of transporter up-regulation might offer an interesting novel therapeutic concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Notes

  1. ABCC: C-Subfamilie der „ATP-binding-cassette“-Transporter.

Literatur

  1. Ak H, Ay B, Tanriverdi T et al (2007) Expression and cellular distribution of multidrug resistance-related proteins in patients with focal cortical dysplasia. Seizure 16:493–503

    Article  PubMed  Google Scholar 

  2. Anderson GD, Shen DD (2007) Where is the evidence that p-glycoprotein limits brain uptake of antiepileptic drug and contributes to drug resistance in epilepsy? Epilepsia 48:2372–2374

    Article  PubMed  Google Scholar 

  3. Araki T, Otsubo H, Makino Y et al (2006) Efficacy of dexamathasone on cerebral swelling and seizures during subdural grid EEG recording in children. Epilepsia 47:176–180

    Article  PubMed  CAS  Google Scholar 

  4. Aronica E, Gorter JA, Jansen GH et al (2003) Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience 118:417–429

    Article  PubMed  CAS  Google Scholar 

  5. Aronica E, Gorter JA, Ramkema M et al (2004) Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 45:441–451

    Article  PubMed  CAS  Google Scholar 

  6. Aronica E, Gorter JA, Redeker S et al (2005) Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 46:849–857

    Article  PubMed  CAS  Google Scholar 

  7. Baik EJ, Kim EJ, Lee SH et al (1999) Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus. Brain Res 843:118–129

    Article  PubMed  CAS  Google Scholar 

  8. Baltes S, Gastens AM, Fedrowitz M et al (2007) Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52:333–346

    Article  PubMed  CAS  Google Scholar 

  9. Bankstahl JP, Hoffmann K, Bethmann K et al (2008) Glutamate is critically involved in seizure-induced overexpression of P-glycoprotein in the brain. Neuropharmacology 54: 1006–1016

    Article  PubMed  CAS  Google Scholar 

  10. Bartmann H, Fuest C, La Fougere C et al (2010) Imaging of P-glycoprotein-mediated pharmacoresistance in the hippocampus: proof-of-concept in a chronic rat model of temporal lobe epilepsy. Epilepsia, doi: 10.1111/j.1528-1167.2010.02671.x

  11. Bates SF, Chen C, Robey R et al (2002) Reversal of multidrug resistance: lessons from clinical oncology. Novartis Found Symp 243:83–96; discussion 96–102, 180–105

    Article  PubMed  CAS  Google Scholar 

  12. Bauer B, Hartz AM, Fricker G et al (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med 230:118–127

    CAS  Google Scholar 

  13. Bauer B, Hartz AM, Pekcec A et al (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73:1444–1453

    Article  PubMed  CAS  Google Scholar 

  14. Brandt C, Bethmann K, Gastens AM et al (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211

    Article  PubMed  CAS  Google Scholar 

  15. Clinckers R, Smolders I, Meurs A et al (2005) Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharmacol Exp Ther 314:725–731

    Article  PubMed  CAS  Google Scholar 

  16. Cucullo L, Hossain M, Rapp E et al (2007) Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48:505–516

    Article  PubMed  CAS  Google Scholar 

  17. Darius J, Meyer FP, Sabel BA et al (2000) Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J Pharm Pharmacol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  18. Dombrowski SM, Desai SY, Marroni M et al (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506

    Article  PubMed  CAS  Google Scholar 

  19. Elsinga PH, Hendrikse NH, Bart J et al (2004) PET Studies on P-glycoprotein function in the blood-brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des 10:1493–1503

    Article  PubMed  CAS  Google Scholar 

  20. Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7:447–459

    Article  PubMed  CAS  Google Scholar 

  21. Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  PubMed  CAS  Google Scholar 

  22. Gibbs JP, Adeyeye MC, Yang Z et al (2004) Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res 58:53–66

    Article  PubMed  CAS  Google Scholar 

  23. Hendrikse NH (2000) Monitoring interactions at ATP-dependent drug efflux pumps. Curr Pharm Des 6:1653–1668

    Article  PubMed  CAS  Google Scholar 

  24. Hendrikse NH, Kuipers F, Meijer C et al (2004) In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother Pharmacol 54:131–138

    Article  PubMed  CAS  Google Scholar 

  25. Hendrikse NH, Schinkel AH, de Vries EG et al (1998) Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413–1418

    Article  PubMed  CAS  Google Scholar 

  26. Hendrikse NH, Vaalburg W (2002) Dynamics of multidrug resistance: P-glycoprotein analyses with positron emission tomography. Methods 27:228–233

    Article  PubMed  CAS  Google Scholar 

  27. Hendrikse NH, Vaalburg W (2002) Imaging of P glycoprotein function in vivo with PET. Novartis Found Symp 243:137–145; discussion 145–138, 180–135

    Article  PubMed  CAS  Google Scholar 

  28. Hoffmann K, Gastens AM, Volk HA et al (2006) Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 69:1–14

    Article  PubMed  CAS  Google Scholar 

  29. Hoffmeyer S, Burk O, Von Richter O et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478

    Article  PubMed  CAS  Google Scholar 

  30. Huls M, Russel FG, Masereeuw R (2009) The role of ATP binding cassette transporters in tissue defense and organ regeneration. J Pharmacol Exp Ther 328:3–9

    Article  PubMed  CAS  Google Scholar 

  31. Huwyler J, Drewe J, Klusemann C et al (1996) Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 118:1879–1885

    PubMed  CAS  Google Scholar 

  32. Iannetti P, Parisi P, Spalice A et al (2009) Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res 85:89–95

    Article  PubMed  CAS  Google Scholar 

  33. Iannetti P, Spalice A, Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46:967–969

    Article  PubMed  Google Scholar 

  34. Kasperaviciute D, Sisodiya SM (2009) Epilepsy pharmacogenetics. Pharmacogenomics 10:817–836

    Article  PubMed  CAS  Google Scholar 

  35. Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A „silent“ polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  PubMed  CAS  Google Scholar 

  36. Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81

    Article  PubMed  CAS  Google Scholar 

  37. Kubota H, Ishihara H, Langmann T et al (2006) Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68:213–228

    Article  PubMed  CAS  Google Scholar 

  38. Kwan P, Brodie MJ (2006) Refractory epilepsy: mechanisms and solutions. Expert Rev Neurother 6:397–406

    Article  PubMed  Google Scholar 

  39. Langer O, Bauer M, Hammers A et al (2007) Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[(11)C]verapamil. Epilepsia 48:1774–1784

    Article  PubMed  CAS  Google Scholar 

  40. Lazarowski A, Lubieniecki F, Camarero S et al (2004) Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol 30:102–106

    Article  PubMed  Google Scholar 

  41. Lee YJ, Maeda J, Kusuhara H et al (2006) In vivo evaluation of P-glycoprotein function at the blood-brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther 316:647–653

    Article  PubMed  CAS  Google Scholar 

  42. Loscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50:1–23

    Article  PubMed  CAS  Google Scholar 

  43. Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6:591–602

    Article  PubMed  CAS  Google Scholar 

  44. Loscher W, Sills GJ (2007) Drug resistance in epilepsy: why is a simple explanation not enough? Epilepsia 48:2370–2372

    Article  PubMed  Google Scholar 

  45. Luna-Tortos C, Fedrowitz M, Loscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375

    Article  PubMed  CAS  Google Scholar 

  46. Luna-Tortos C, Rambeck B, Jurgens UH, Loscher W (2009) The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm Res 26:2464–2470

    Article  PubMed  CAS  Google Scholar 

  47. Luurtsema G, Molthoff CF, Windhorst AD et al (2003) (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 30:747–751

    Article  PubMed  CAS  Google Scholar 

  48. Macphee GJ, Mcinnes GT, Thompson GG et al (1986) Verapamil potentiates carbamazepine neurotoxicity: a clinically important inhibitory interaction. Lancet 1:700–703

    Article  PubMed  CAS  Google Scholar 

  49. Marchi N, Betto G, Fazio V et al (2009) Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia 50:664–677

    Article  PubMed  CAS  Google Scholar 

  50. Marchi N, Guiso G, Rizzi M et al (2005) A pilot study on brain-to-plasma partition of 10,11-dyhydro-10-hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in epilepsy patients not responding to oxcarbazepine. Epilepsia 46:1613–1619

    Article  PubMed  CAS  Google Scholar 

  51. Marzolini C, Paus E, Buclin T et al (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33

    Article  PubMed  CAS  Google Scholar 

  52. Pekcec A, Unkruer B, Schlichtiger J et al (2009) Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 330:939–947

    Article  PubMed  CAS  Google Scholar 

  53. Potschka H (2010) Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther 125:118–127

    Article  PubMed  CAS  Google Scholar 

  54. Potschka H, Fedrowitz M, Loscher W (2003) Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 306:124–131

    Article  PubMed  CAS  Google Scholar 

  55. Potschka H, Volk HA, Loscher W (2004) Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. Neuroreport 15:1657–1661

    Article  PubMed  CAS  Google Scholar 

  56. Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35

    Article  PubMed  Google Scholar 

  57. Rizzi M, Caccia S, Guiso G et al (2002) Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 22:5833–5839

    PubMed  CAS  Google Scholar 

  58. Rogawski MA, Johnson MR (2008) Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr 8:127–130

    Article  PubMed  Google Scholar 

  59. Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  PubMed  CAS  Google Scholar 

  60. Schlichtiger J, Pekcec A, Bartmann H et al (2010) Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. Br J Pharmacol 160:1062–1071

    Article  PubMed  CAS  Google Scholar 

  61. Seegers U, Potschka H, Loscher W (2002) Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. Eur J Pharmacol 451:149–155

    Article  PubMed  CAS  Google Scholar 

  62. Sharma V (2004) Radiopharmaceuticals for assessment of multidrug resistance P-glycoprotein-mediated drug transport activity. Bioconjug Chem 15:1464–1474

    Article  PubMed  CAS  Google Scholar 

  63. Siddiqui A, Kerb R, Weale ME et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348:1442–1448

    Article  PubMed  CAS  Google Scholar 

  64. Sisodiya SM, Heffernan J, Squier MV (1999) Over-expression of P-glycoprotein in malformations of cortical development. Neuroreport 10:3437–3441

    Article  PubMed  CAS  Google Scholar 

  65. Sisodiya SM, Lin WR, Harding BN et al (2002) Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 125:22–31

    Article  PubMed  CAS  Google Scholar 

  66. Summers MA, Moore JL, McAuley JW (2004) Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 38:1631–1634

    Article  PubMed  Google Scholar 

  67. Syvanen S, Hooker A, Rahman O et al (2008) Pharmacokinetics of P-glycoprotein inhibition in the rat blood-brain barrier. J Pharm Sci 97:5386–5400

    Article  PubMed  CAS  Google Scholar 

  68. Takemiya T, Maehara M, Matsumura K et al (2006) Prostaglandin E2 produced by late induced COX-2 stimulates hippocampal neuron loss after seizure in the CA3 region. Neurosci Res 56:103–110

    Article  PubMed  CAS  Google Scholar 

  69. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165

    PubMed  Google Scholar 

  70. Tishler DM, Weinberg KI, Hinton DR et al (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6

    Article  PubMed  CAS  Google Scholar 

  71. Van Vliet EA, Redeker S, Aronica E et al (2005) Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 46:1569–1580

    Article  Google Scholar 

  72. Van Vliet EA, Van Schaik R, Edelbroek PM et al (2006) Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia 47:672–680

    Article  Google Scholar 

  73. Van Vliet EA, Van Schaik R, Edelbroek PM et al (2007) Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats. J Pharmacol Exp Ther 322:141–147

    Article  CAS  Google Scholar 

  74. Van Vliet EA, Zibell G, Pekcec A et al (2010) COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58:404–412

    Article  CAS  Google Scholar 

  75. Volk HA, Loscher W (2005) Multidrug resistance in epilepsy: rats with drug-resistant seizures exhibit enhanced brain expression of P-glycoprotein compared with rats with drug-responsive seizures. Brain 128:1358–1368

    Article  PubMed  Google Scholar 

  76. Wen T, Liu YC, Yang HW et al (2008) Effect of 21-day exposure of phenobarbital, carbamazepine and phenytoin on P-glycoprotein expression and activity in the rat brain. J Neurol Sci 270:99–106

    Article  PubMed  CAS  Google Scholar 

  77. Zibell G, Unkruer B, Pekcec A et al (2009) Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology 56:849–855

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Potschka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potschka, H. Transporterhypothese der Pharmakoresistenz von Epilepsien. Z. Epileptol. 23, 152–160 (2010). https://doi.org/10.1007/s10309-010-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-010-0105-2

Schlüsselwörter

Keywords

Navigation