Skip to main content
Log in

Pathophysiologie des Fieberkrampfes

Sicht der experimentellen Epilepsieforschung

Pathophysiology of febrile seizures

View of experimental epilepsy research

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Zusammenfassung

Fieberkrämpfe gehören zu den häufigsten Formen pathologischer Hirnaktivität bei Kindern. In diesem Übersichtsbeitrag wird das aktuelle Wissen über die Mechanismen und Folgen von Fieberkrämpfen zusammengefasst, das aus der Arbeit mit Tiermodellen in der experimentellen Epilepsieforschung gewonnen werden konnte. Es wird gezeigt, dass die alleinige Erhöhung der Körpertemperatur epileptiforme Anfälle im Tierversuch auslösen kann und dass fieberspezifische Faktoren, wie Zytokine, oder kompensatorische Reaktionen auf Fieber, wie Steigerung der Atmung, signifikant dazu beitragen können. Hinsichtlich der Frage nach der Entstehung von Epilepsien aufgrund von Fieberkrämpfen werden die Befunde zu den lang überdauernden funktionellen und morphologischen Veränderungen im Gehirn der Versuchstiere beschrieben, die nach Hyperthermieanfällen aufgetreten sind. Abschließend wird die Bedeutung der tierexperimentellen Ergebnisse für das Verständnis der Fieberkrämpfe des Menschen diskutiert.

Abstract

Febrile seizures are a very common form of pathologic brain activity in children. This review summarizes current knowledge on the mechanisms and consequences of febrile seizures, which has been obtained from animal models in experimental epilepsy research. It is shown that an increase of body temperature alone is able to induce epileptiform seizures in animals and that fever-specific factors, e.g., production of cytokines, and compensatory reactions, e.g., increased breathing, can contribute significantly. Concerning the question of epileptogenesis caused by febrile seizures, long-lasting changes of functional and morphological parameters that appear after seizures caused by hyperthermia in animal brains are described. Finally, the relevance of the results from animal models for our understanding of human febrile seizures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Barrett EF, Barrett JN, Botz D et al (1978) Temperature-sensitive aspects of evoked and spontaneous transmitter release at the frog neuromuscular junction. J Physiol 279:253–273

    CAS  PubMed  Google Scholar 

  2. Baulac S, Gourfinkel-An I, Nabbout R et al (2004) Fever, genes, and epilepsy. Lancet Neurol 3:421–430

    Article  CAS  PubMed  Google Scholar 

  3. Bender RA, Dube C, Baram TZ (2004) Febrile seizures and mechanisms of epileptogenesis: insights from an animal model. Adv Exp Med Biol 548:213–225

    CAS  PubMed  Google Scholar 

  4. Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5:888–894

    Article  CAS  PubMed  Google Scholar 

  5. Dube C, Chen K, Eghbal-Ahmadi M et al (2000) Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann Neurol 47:336–344

    Article  CAS  PubMed  Google Scholar 

  6. Dube CM, Brewster AL, Richichi C et al (2007) Fever, febrile seizures and epilepsy. Trends Neurosci 30:490–496

    Article  CAS  PubMed  Google Scholar 

  7. Dube C, Vezzani A, Behrens M et al (2005) Interleukin-1β contributes to the generation of experimental febrile seizures. Ann Neurol 57:152–155

    Article  CAS  PubMed  Google Scholar 

  8. Fukuda M, Morimoto T, Suzuki Y et al (2007) Interleukin-6 attenuates hyperthermia-induced seizures in developing rats. Brain Dev 29:644–648

    Article  PubMed  Google Scholar 

  9. Han Y, Qin J, Bu DF et al (2006) Successive alterations of hippocampal gamma-aminobutyric acid B receptor subunits in a rat model of febrile seizure. Life Sci 78:2944–2952

    Article  CAS  PubMed  Google Scholar 

  10. Heida JG, Pittman QJ (2005) Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 46:1906–1913

    Article  CAS  PubMed  Google Scholar 

  11. Holtzman D, Obana K, Olson J (1981) Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. Science 213:1034–1036

    Article  CAS  PubMed  Google Scholar 

  12. Ishizaki Y, Kira R, Fukuda M et al (2009) Interleukin-10 is associated with resistance to febrile seizures: genetic association and experimental animal studies. Epilepsia 50:761–767

    Article  CAS  PubMed  Google Scholar 

  13. Kamal A, Notenboom RG, De Graan PN, Ramakers GM (2006) Persistent changes in action potential broadening and the slow afterhyperpolarization in rat CA1 pyramidal cells after febrile seizures. Eur J Neurosci 23:2230–2234

    Article  PubMed  Google Scholar 

  14. Kwak SE, Kim JE, Kim SC et al (2008) Hyperthermic seizure induces persistent alteration in excitability of the dentate gyrus in immature rats. Brain Res 1216:1–15

    Article  CAS  PubMed  Google Scholar 

  15. Liebregts MT, McLachlan RS, Leung LS (2002) Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann Neurol 52:318–326

    Article  PubMed  Google Scholar 

  16. Mizunuma M, Takahashi N, Usami A et al (2009) High-temperature, but not high-pressure, conditions alter neuronal activity. J Pharmacol Sci 110:117–121

    Article  CAS  PubMed  Google Scholar 

  17. Morimoto T, Fukuda M, Aibara Y et al (1996) The influence of blood gas changes on hyperthermia-induced seizures in developing rats. Brain Res Dev 92:77–80

    Article  CAS  Google Scholar 

  18. Nealis JG, Rosman NP, De Piero TJ, Quellette EM (1978) Neurologic sequelae of experimental febrile convulsions. Neurology 28:246–250

    CAS  PubMed  Google Scholar 

  19. Schuchmann S, Schmitz D, Rivera C et al (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823

    Article  CAS  PubMed  Google Scholar 

  20. Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. Neuroscientist 8:254–267

    CAS  PubMed  Google Scholar 

  21. Toth Z, Yan X, Haftoglou S et al (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18:4285–4294

    CAS  PubMed  Google Scholar 

  22. Tsai ML, Leung LS (2006) Decrease of hippocampal GABA B receptor-mediated inhibition after hyperthermia-induced seizures in immature rats. Epilepsia 47:277–287

    Article  CAS  PubMed  Google Scholar 

  23. Wahl LM, Pouzat C, Strarford KJ (1996) Monte Carlo simulation of fast excitatory synaptic transmission at a hippocampal synapse. J Neurophysiol 75:597–608

    CAS  PubMed  Google Scholar 

  24. Wu J, Fisher R (2000) Hyperthermic spreading depressions in the immature rat hippocampal slice. J Neurophysiol 84:1355–1360

    CAS  PubMed  Google Scholar 

  25. Wu J, Javedan SP, Ellsworth K et al (2001) Gamma oscillations underlies hyperthermia-induced epileptiform-like spikes in immature rat hippocampal slices. BMC Neurosci 2:18

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Madeja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeja, M., Hertie-Forschungsgruppe „Spannungsgesteuerte Ionenkanäle“ am Zentrum für Physiologie, Universität Frankfurt. Pathophysiologie des Fieberkrampfes. Z. Epileptol. 22, 209–212 (2009). https://doi.org/10.1007/s10309-009-0064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-009-0064-7

Schlüsselwörter

Keywords

Navigation