Skip to main content
Log in

Die Physiologie des Implantationsprozesses

The physiology of the implantation process

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Die Implantation der Blastozyste ist ein komplexer Prozess, auf den der Embryo und das Endometrium zum korrekten Zeitpunkt vorbereitet sein müssen. Die Implantation des menschlichen Embryos lässt sich aus ethischen Gründen in vivo kaum untersuchen. Erkenntnisse aus Tiermodellen sind aufgrund deutlicher speziesbezogener Unterschiede nur sehr eingeschränkt übertragbar. Aus diesen Gründen werden zunehmend 3‑dimensionale Modelle entwickelt, in denen Trophoblastsphäroide oder embryoide Strukturen mit einer deziduaähnlichen Matrix konfrontiert werden. Im vorliegenden Beitrag werden die aktuell bekannten Faktoren und Interaktionen mit Bedeutung für die Implantation zusammengefasst, sowohl auf zellulärer als auch auf molekularer Ebene. Zunächst werden vorbereitende Prozesse im Menstruationszyklus beschrieben. Daran schließt sich eine Beschreibung relevanter Komponenten des Immunsystems an, wobei ausführlich auf die Eigenschaften und Funktionen uteriner natürlicher Killerzellen eingegangen wird. Im Weiteren wird die Rolle verschiedener molekularer Faktoren in der Implantation diskutiert (Zytokine, Wachstumsfaktoren, Zelladhäsionsmoleküle, Hormone). Perspektivisch ist damit zu rechnen, dass Studien an den oben erwähnten 3‑dimensionalen Modellen trotz aller Limitationen neue Erkenntnisse zur Embryoimplantation beim Menschen liefern werden. Dies könnte sich letztlich positiv auf die reproduktionsmedizinische Praxis auswirken.

Abstract

The implantation of the blastocyst is a complex process for which the embryo and the endometrium must be prepared at the correct point in time. For ethical reasons it is nearly impossible to investigate the implantation of human embryos in vivo. Due to clear species-related differences the transfer of knowledge from animal models is very limited. For these reasons 3‑dimensional models are increasingly being developed in which spheroid trophoblast or embryoid structures are confronted with a decidua-like matrix. This article summarizes the currently known factors and interactions, which are important for implantation at both the cellular and also the molecular levels. At first the preparatory processes in the menstrual cycle are described. This is followed by a description of relevant components of the immune system, whereby the properties and functions of uterine natural killer cells are dealt with in detail. Furthermore, the role of various molecular factors in the implantation is discussed (cytokines, growth factors, cell adhesion molecules, hormones). In perspective, it is to be expected that despite all the limitations studies on the abovementioned 3‑dimensional models will provide new knowledge on human embryo implantation. This could ultimately have a positive effect on the practice of reproductive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Fitzgerald JS et al (2008) Trophoblast invasion: the role of intracellular cytokine signalling via signal transducer and activator of transcription 3 (STAT3). Hum Reprod Update 14(4):335–344

    Article  CAS  PubMed  Google Scholar 

  2. Kammerer U, von Wolff M, Markert UR (2004) Immunology of human endometrium. Immunobiology 209(7):569–574

    Article  PubMed  Google Scholar 

  3. Herrler A, von Rango U, Beier HM (2003) Embryo-maternal signalling: how the embryo starts talking to its mother to accomplish implantation. Reprod Biomed Online 6(2):244–256

    Article  CAS  PubMed  Google Scholar 

  4. Reed BG, Carr BR (2000) The normal menstrual cycle and the control of ovulation. In: Feingold KR et al (Hrsg) Endotext

    Google Scholar 

  5. Thiyagarajan DK, Basit H, Jeanmonod R (2024) Physiology, menstrual cycle. StatPearls, Treasure Island (FL)

    Google Scholar 

  6. Banchereau J et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18(1):767–811

    Article  CAS  PubMed  Google Scholar 

  7. Bulmer JN, Johnson PM (1984) Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol 57(2):393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Heikkinen J et al (2003) Phenotypic characterization of human decidual macrophages. Clin Exp Immunol 131(3):498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wegmann TG et al (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14(7):353–356

    Article  CAS  PubMed  Google Scholar 

  10. Bulmer JN, Williams PJ, Lash GE (2010) Immune cells in the placental bed. Int J Dev Biol 54(2):281–294

    Article  PubMed  Google Scholar 

  11. Wienke J et al (2020) Human tregs at the materno-fetal interface show site-specific adaptation reminiscent of tumor tregs. JCI Insight. https://doi.org/10.1172/jci.insight.137926

    Article  PubMed  PubMed Central  Google Scholar 

  12. Svensson-Arvelund J et al (2015) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 194(4):1534–1544

    Article  CAS  PubMed  Google Scholar 

  13. Starkey PM, Clover LM, Rees MCP (1991) Variation during the menstrual cycle of immune cell populations in human endometrium. Eur J Obstet Gynecol Reprod Biol 39(3):203–207

    Article  CAS  PubMed  Google Scholar 

  14. Russell P et al (2013) The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. III: further observations and reference ranges. Pathology 45(4):393–401

    Article  CAS  PubMed  Google Scholar 

  15. Colucci F, Di Santo JP, Leibson PJ (2002) Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol 3:807

    Article  CAS  PubMed  Google Scholar 

  16. Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656

    Article  CAS  PubMed  Google Scholar 

  17. Marron K, Walsh D, Harrity C (2018) Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J Assist Reprod Genet. https://doi.org/10.1007/s10815-018-1300-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bulmer JN, Lash GE (2005) Human uterine natural killer cells: a reappraisal. Mol Immunol 42(4):511–521

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Croy BA, Tian Z (2005) Uterine natural killer cells: their choices, their missions. Cell Mol Immunol 2(2):123–129

    CAS  PubMed  Google Scholar 

  20. Lanier LL et al (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136(12):4480–4486

    Article  CAS  PubMed  Google Scholar 

  21. Chiokadze M et al (2020) Beyond uterine natural killer cell numbers in unexplained recurrent pregnancy loss: combined analysis of CD45, CD56, CD16, CD57, and CD138. Diagnostics. https://doi.org/10.3390/diagnostics10090650

    Article  PubMed  PubMed Central  Google Scholar 

  22. Croy BA et al (2003) Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction 126(2):149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith SD et al (2009) Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174(5):1959–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong X et al (2014) Insights into the paracrine effects of uterine natural killer cells. Mol Med Rep 10(6):2851–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Azzamy H et al (2018) Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol 80(4):e13024

    Article  PubMed  Google Scholar 

  26. Poehlmann TG et al (2006) Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol 56(5–6):275–285

    Article  CAS  PubMed  Google Scholar 

  27. Chaouat G et al (2005) Cytokines and implantation. Chem Immunol Allergy 88:34–63

    CAS  PubMed  Google Scholar 

  28. Bachmayer N et al (2006) Aberrant uterine natural killer (NK)-cell expression and altered placental and serum levels of the NK-cell promoting cytokine interleukin-12 in pre-eclampsia. Am J Reprod Immunol 56(5):292–301

    Article  CAS  PubMed  Google Scholar 

  29. Dosiou C, Giudice LC (2005) Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 26(1):44–62

    Article  CAS  PubMed  Google Scholar 

  30. Kofod L, Lindhard A, Hviid TVF (2018) Implications of uterine NK cells and regulatory T cells in the endometrium of infertile women. Hum Immunol 79(9):693–701

    Article  CAS  PubMed  Google Scholar 

  31. Kuon RJ et al (2017) Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol. https://doi.org/10.1111/aji.12721

    Article  PubMed  Google Scholar 

  32. Quenby S et al (2009) Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod 24(1):45–54

    Article  CAS  PubMed  Google Scholar 

  33. Tuckerman E et al (2010) Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol 87(1–2):60–66

    Article  CAS  PubMed  Google Scholar 

  34. Zhu L et al (2018) Increased natural killer cell subsets with inhibitory cytokines and inhibitory surface receptors in patients with recurrent miscarriage and decreased or normal subsets in kidney transplant recipients late post-transplant. Clin Exp Immunol 193(2):241–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharkey AM, Smith SK (2003) The endometrium as a cause of implantation failure. Best Pract Res Clin Obstet Gynaecol 17(2):289–307

    Article  PubMed  Google Scholar 

  36. Tabibzadeh S, Babaknia A (1995) The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod 10(6):1579–1602

    Article  CAS  PubMed  Google Scholar 

  37. Godbole G et al (2017) Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology 158(8):2618–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salamonsen LA et al (2016) The microenvironment of human implantation: determinant of reproductive success. Am J Reprod Immunol 75(3):218–225

    Article  PubMed  Google Scholar 

  39. Burton GJ et al (2002) Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 87(6):2954–2959

    Article  CAS  PubMed  Google Scholar 

  40. Chaouat G, Ledee-Bataille N, Dubanchet S (2005) Immunological similarities between implantation and pre-eclampsia. Am J Reprod Immunol 53(5):222–229

    Article  CAS  PubMed  Google Scholar 

  41. Markert UR, Morales-Prieto DM, Fitzgerald JS (2011) Understanding the link between the IL‑6 cytokine family and pregnancy: implications for future therapeutics. Expert Rev Clin Immunol 7(5):603–609

    Article  CAS  PubMed  Google Scholar 

  42. Dimitriadis E et al (2005) Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 11(6):613–630

    Article  CAS  PubMed  Google Scholar 

  43. Guzeloglu-Kayisli O, Kayisli UA, Taylor HS (2009) The role of growth factors and cytokines during implantation: endocrine and paracrine interactions. Semin Reprod Med 27(1):62–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marwood M et al (2009) Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology 150(6):2915–2923

    Article  CAS  PubMed  Google Scholar 

  45. Cullinan EB et al (1996) Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc Natl Acad Sci U S A 93(7):3115–3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tangri S, Raghupathy R (1993) Expression of cytokines in placentas of mice undergoing immunologically mediated spontaneous fetal resorptions. Biol Reprod 49(4):850–856

    Article  CAS  PubMed  Google Scholar 

  47. Torchinsky A, Markert UR, Toder V (2005) TNF-alpha-mediated stress-induced early pregnancy loss: a possible role of leukemia inhibitory factor. Chem Immunol Allergy 89:62–71

    Article  CAS  PubMed  Google Scholar 

  48. Ashkar AA, Croy BA (2001) Functions of uterine natural killer cells are mediated by interferon gamma production during murine pregnancy. Semin Immunol 13(4):235–241

    Article  CAS  PubMed  Google Scholar 

  49. Mehta-Chimote B (2010) Cytokines and growth factors in implantation Bd. 1, S 219–243

    Google Scholar 

  50. Nose A, Takeichi M (1986) A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J Cell Biol 103(6):2649–2658

    Article  CAS  PubMed  Google Scholar 

  51. Aplin JD (1997) Adhesion molecules in implantation. Rev Reprod 2(2):84–93

    Article  CAS  PubMed  Google Scholar 

  52. Lessey BA (2002) Adhesion molecules and implantation. J Reprod Immunol 55(1):101–112

    Article  CAS  PubMed  Google Scholar 

  53. Karizbodagh MP et al (2017) Implantation window and angiogenesis. J Cell Biochem 118(12):4141–4151

    Article  CAS  PubMed  Google Scholar 

  54. Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18(12):1754–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simon C et al (2003) The role of estrogen in uterine receptivity and blastocyst implantation. Trends Endocrinol Metab 14(5):197–199

    Article  CAS  PubMed  Google Scholar 

  56. Psychoyos A, Nikas G, Gravanis A (1995) The role of prostaglandins in blastocyst implantation. Hum Reprod 10(2):30–42

    Article  CAS  PubMed  Google Scholar 

  57. Salleh N (2014) Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal 2014:968141

    Article  PubMed  PubMed Central  Google Scholar 

  58. Paulson EE, Comizzoli P (2021) Endometrial receptivity and embryo implantation in carnivores-commonalities and differences with other mammalian species. Biol Reprod 104(4):771–783

    Article  PubMed  Google Scholar 

  59. Weber M et al (2021) Cytogenomics of six human trophoblastic cell lines. Placenta 103:72–75

    Article  CAS  PubMed  Google Scholar 

  60. Pastuschek J et al (2021) Molecular characteristics of established trophoblast-derived cell lines. Placenta 108:122–133

    Article  CAS  PubMed  Google Scholar 

  61. Zhang M, Reis AH, Simunovic M (2023) Human embryoids: a new strategy of recreating the first steps of embryonic development in vitro. Semin Cell Dev Biol 141:14–22

    Article  CAS  PubMed  Google Scholar 

  62. Ban Z, Knospel F, Schneider MR (2020) Shedding light into the black box: advances in in vitro systems for studying implantation. Dev Biol 463(1):1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Förderung

Das Placenta-Labor koordiniert das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Center for Early Pregnancy and Reproductive Health (CEPRE). U.R. Markert wird von der Deutschen Forschungsgemeinschaft gefördert (Projektnummer: 537607142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo R. Markert.

Ethics declarations

Interessenkonflikt

M.T. Huber und U.R. Markert geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Georg Griesinger, Lübeck

Wolfgang Küpker, Baden-Baden

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, M.T., Markert, U.R. Die Physiologie des Implantationsprozesses. Gynäkologische Endokrinologie 22, 95–101 (2024). https://doi.org/10.1007/s10304-024-00563-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-024-00563-4

Schlüsselwörter

Keywords

Navigation