Skip to main content
Log in

Immunologische Konsequenzen bei frühgeborenen Kindern

The immune consequences of preterm birth

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Das Risiko für Frühgeburten konnte trotz des wachsenden medizinischen Fortschritts der vergangenen Jahrzehnte nicht nennenswert gesenkt werden und betrifft derzeit etwa 8–11 % aller Schwangerschaften. Eine Frühgeburt ist verbunden mit einer hohen Morbidität und Mortalität der Kinder. In diesem Zusammenhang haben die postnatal fortgesetzte Reifung des Immunsystems und die weitere Entwicklung von Organen in extrauteriner statt intrauteriner Umgebung eine besondere Bedeutung. Hierbei wird das neonatale, noch nicht an die extrauterine Umgebung angepasste Immunsystem mit der verfrühten postnatalen Mikrobiombesiedlung der noch nicht voll ausgereiften Organe konfrontiert. Auch besteht die Gefahr des Kontakts mit pathogenen Erregern und daraus resultierenden Infektionen. Zusammengenommen hat die Frühgeburt weitreichende gesundheitliche Konsequenzen für die Kinder, die bis ins Erwachsenenalter bestehen können. Der vorzeitig unterbrochene Transfer von mütterlichen Nährstoffen und Immunmarkern über die Plazenta kann diese Krankheitsrisiken noch verstärken. Wir diskutieren hier grundlegende Mechanismen der Immunantwort bei Frühgeborenen und stellen klinische Handlungsmaßnahmen vor.

Abstract

Despite growing medical progress in recent decades, the risk of preterm birth has not been significantly reduced and affects about 8–11% of all pregnancies. Preterm birth is associated with high infant morbidity and mortality. In this context, the continuous postnatal maturation of the immune system and the ongoing development of organs in an extrauterine, rather than intrauterine, environment is of pivotal significance. In this sítuation, the neonatal immune system, which is not yet adapted to the extrauterine environment, is confronted with the premature postnatal microbiome colonization of not yet fully matured organs. Also, there is the permanent threat of pathogen encounter and infections. Taken together, these influences have far-reaching health consequences that may persist into adulthood. The prematurely interrupted transfer of maternal nutrients and immune markers across the placenta can exacerbate these disease risks. This article discusses the basic mechanisms of immune response in preterm infants and proposes clinical measures for action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra265

    Google Scholar 

  2. Abe K, Shapiro-Mendoza CK, Hall LR et al (2010) Late preterm birth and risk of developing asthma. J Pediatr 157:74–78

    PubMed  Google Scholar 

  3. Albrecht M, Arck PC (2020) Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front Immunol 11:555

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson J, Do LAH, Wurzel D et al (2023) Understanding the increased susceptibility to asthma development in preterm infants. Allergy 78:928–939

    PubMed  Google Scholar 

  5. Anderson J, Thang CM, Thanh LQ et al (2021) Immune profiling of cord blood from preterm and term infants reveals distinct differences in pro-inflammatory responses. Front Immunol 12:777927

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Annunziato F, Romagnani C, Romagnani S (2015) The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol 135:626–635

    CAS  PubMed  Google Scholar 

  7. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19:548–556

    CAS  PubMed  Google Scholar 

  8. Barbarot S, Gras-Leguen C, Colas H et al (2013) Lower risk of atopic dermatitis among infants born extremely preterm compared with higher gestational age. Br J Dermatol 169:1257–1264

    CAS  PubMed  Google Scholar 

  9. Been JV, Lugtenberg MJ, Smets E et al (2014) Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med 11:e1001596

    PubMed  PubMed Central  Google Scholar 

  10. Blencowe H, Cousens S, Oestergaard MZ et al (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379:2162–2172

    PubMed  Google Scholar 

  11. Bührer C, Grimmer I, Niggemann B et al (1999) Low 1‑year prevalence of atopic eczema in very low birthweight infants. Lancet 353:1674

    PubMed  Google Scholar 

  12. Collins A, Weitkamp JH, Wynn JL (2018) Why are preterm newborns at increased risk of infection? Arch Dis Child Fetal Neonatal Ed 103:F391–F394

    PubMed  Google Scholar 

  13. Correa-Rocha R, Pérez A, Lorente R et al (2012) Preterm neonates show marked leukopenia and lymphopenia that are associated with increased regulatory T‑cell values and diminished IL‑7. Pediatr Res 71:590–597

    CAS  PubMed  Google Scholar 

  14. Crump C, Sundquist J, Winkleby MA et al (2019) Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. Lancet Child Adolesc Health 3:408–417

    PubMed  PubMed Central  Google Scholar 

  15. Cuna A, Morowitz MJ, Ahmed I et al (2021) Dynamics of the preterm gut microbiome in health and disease. Am J Physiol Gastrointest Liver Physiol 320:G411–G419

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Darlow BA, Cheong JLY (2019) The continuum of late preterm and early term births. Semin Fetal Neonatal Med 24:1–2

    PubMed  Google Scholar 

  17. De Jong E, Strunk T, Burgner D et al (2017) The phenotype and function of preterm infant monocytes: implications for susceptibility to infection. J Leukoc Biol 102:645–656

    PubMed  Google Scholar 

  18. Delnord M, Zeitlin J (2019) Epidemiology of late preterm and early term births—An international perspective. Semin Fetal Neonatal Med 24:3–10

    PubMed  Google Scholar 

  19. Dolatshahi S, Butler AL, Pou C et al (2022) Selective transfer of maternal antibodies in preterm and fullterm children. Sci Rep 12:14937

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Donald K, Finlay BB (2023) Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol. https://doi.org/10.1038/s41577-023-00874-w

    Article  PubMed  Google Scholar 

  21. Elahi S, Ertelt JM, Kinder JM et al (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504:158–162

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gensollen T, Blumberg RS (2017) Correlation between early-life regulation of the immune system by microbiota and allergy development. J Allergy Clin Immunol 139:1084–1091

    PubMed  PubMed Central  Google Scholar 

  23. Gibbons D, Fleming P, Virasami A et al (2014) Interleukin‑8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med 20:1206–1210

    CAS  PubMed  Google Scholar 

  24. Glaser MA, Hughes LM, Jnah A et al (2021) Neonatal sepsis: a review of pathophysiology and current management strategies. Adv Neonatal Care 21:49–60

    PubMed  Google Scholar 

  25. Goedicke-Fritz S, Härtel C, Krasteva-Christ G et al (2017) Preterm birth affects the risk of developing immune-mediated diseases. Front Immunol 8:1266

    PubMed  PubMed Central  Google Scholar 

  26. Gomez-Lopez N, Romero R, Xu Y et al (2016) Umbilical cord CD71+ erythroid cells are reduced in neonates born to women in spontaneous preterm labor. Am J Reprod Immunol 76:280–284

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gough A, Linden M, Spence D et al (2014) Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J 43:808–816

    PubMed  Google Scholar 

  28. Green ES, Arck PC (2020) Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 42:413–429

    PubMed  PubMed Central  Google Scholar 

  29. Groer MW, Luciano AA, Dishaw LJ et al (2014) Development of the preterm infant gut microbiome: a research priority. Microbiome 2:38

    PubMed  PubMed Central  Google Scholar 

  30. Harbeson D, Ben-Othman R, Amenyogbe N et al (2018) Outgrowing the immaturity myth: the cost of defending from neonatal infectious disease. Front Immunol 9:1077

    PubMed  PubMed Central  Google Scholar 

  31. Hartl D, Koller B, Mehlhorn AT et al (2007) Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 119:1258–1266

    CAS  PubMed  Google Scholar 

  32. Hong SH (2023) Influence of microbiota on vaccine effectiveness: “is the microbiota the key to vaccine-induced responses?”. J Microbiol 61(5):483. https://doi.org/10.1007/s12275-023-00044-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Humberg A, Fortmann I, Siller B et al (2020) Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 42:451–468

    PubMed  PubMed Central  Google Scholar 

  34. Jaakkola JJ, Ahmed P, Ieromnimon A et al (2006) Preterm delivery and asthma: a systematic review and meta-analysis. J Allergy Clin Immunol 118:823–830

    PubMed  Google Scholar 

  35. Jakaitis BM, Denning PW (2014) Human breast milk and the gastrointestinal innate immune system. Clin Perinatol 41:423–435

    PubMed  PubMed Central  Google Scholar 

  36. Kalbermatter C, Fernandez Trigo N, Christensen S et al (2021) Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol 12:683022

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamdar S, Hutchinson R, Laing A et al (2020) Perinatal inflammation influences but does not arrest rapid immune development in preterm babies. Nat Commun 11:1284

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim K, Lee JY, Kim YM et al (2023) Prevalence of asthma in preterm and associated risk factors based on prescription data from the Korean National Health Insurance database. Sci Rep 13:4484

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kinder JM, Stelzer IA, Arck PC et al (2017) Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 17:483–494

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kollmann TR, Kampmann B, Mazmanian SK et al (2017) Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46:350–363

    CAS  PubMed  Google Scholar 

  41. Kotecha SJ, Watkins WJ, Lowe J et al (2016) Effect of early-term birth on respiratory symptoms and lung function in childhood and adolescence. Pediatr Pulmonol 51:1212–1221

    PubMed  Google Scholar 

  42. Marshall JS, Warrington R, Watson W et al (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14:49

    PubMed  PubMed Central  Google Scholar 

  43. Mcgreal EP, Hearne K, Spiller OB (2012) Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology 217:176–186

    CAS  PubMed  Google Scholar 

  44. Melville JM, Moss TJ (2013) The immune consequences of preterm birth. Front Neurosci 7:79

    PubMed  PubMed Central  Google Scholar 

  45. Mitha A, Chen R, Altman M et al (2021) Neonatal morbidities in infants born late Preterm at 35–36 weeks of gestation: a Swedish nationwide population-based study. J Pediatr 233:43–50.e45

    PubMed  Google Scholar 

  46. Mitselou N, Andersson N, Bergström A et al (2022) Preterm birth reduces the risk of IgE sensitization up to early adulthood: A population-based birth cohort study. Allergy 77:1570–1582

    CAS  PubMed  Google Scholar 

  47. Moschino L, Bonadies L, Baraldi E (2021) Lung growth and pulmonary function after prematurity and bronchopulmonary dysplasia. Pediatr Pulmonol 56:3499–3508

    PubMed  PubMed Central  Google Scholar 

  48. Moss TJ (2006) Respiratory consequences of preterm birth. Clin Exp Pharmacol Physiol 33:280–284

    CAS  PubMed  Google Scholar 

  49. Natarajan G, Shankaran S (2016) Short- and long-term outcomes of moderate and late preterm infants. Am J Perinatol 33:305–317

    PubMed  Google Scholar 

  50. Pagano F, Conti MG, Boscarino G et al (2021) Atopic manifestations in children born preterm: a long-term observational study. Children 8:843. https://doi.org/10.3390/children8100843

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pagel J, Twisselmann N, Rausch TK et al (2020) Increased regulatory T cells precede the development of bronchopulmonary dysplasia in preterm infants. Front Immunol 11:565257

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Panzer JJ, Romero R, Greenberg JM et al (2023) Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets. BMC Microbiol 23:76

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Park JE, Jardine L, Gottgens B et al (2020) Prenatal development of human immunity. Science 368:600–603

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pérez A, Gurbindo MD, Resino S et al (2007) NK cell increase in neonates from the preterm to the full-term period of gestation. Neonatology 92:158–163

    PubMed  Google Scholar 

  55. Perin J, Mulick A, Yeung D et al (2022) Global, regional, and national causes of under‑5 mortality in 2000–19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health 6:106–115

    PubMed  PubMed Central  Google Scholar 

  56. Peterson LS, Hedou J, Ganio EA et al (2021) Single-cell analysis of the neonatal immune system across the gestational age continuum. Front Immunol 12:714090

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pierau M, Arra A, Brunner-Weinzierl MC (2021) Preventing atopic diseases during childhood—early exposure matters. Front Immunol 12:617731

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pike KC, Lucas JS (2015) Respiratory consequences of late preterm birth. Paediatr Respir Rev 16:182–188

    PubMed  Google Scholar 

  59. Pou C, Nkulikiyimfura D, Henckel E et al (2019) The repertoire of maternal anti-viral antibodies in human newborns. Nat Med 25:591–596

    CAS  PubMed  Google Scholar 

  60. Pravia CI, Benny M (2020) Long-term consequences of prematurity. Cleve Clin J Med 87:759–767

    PubMed  Google Scholar 

  61. Qazi KR, Bach Jensen G, Van Der Heiden M et al (2020) Extremely preterm infants have significant alterations in their conventional T cell compartment during the first weeks of life. J Immunol 204:68–77

    CAS  PubMed  Google Scholar 

  62. Raju TN (2012) Developmental physiology of late and moderate prematurity. Semin Fetal Neonatal Med 17:126–131

    PubMed  Google Scholar 

  63. Raju TNK, Pemberton VL, Saigal S et al (2017) Long-term healthcare outcomes of Preterm birth: an executive summary of a conference sponsored by the national institutes of health. J Pediatr 181:309–318.e301

    PubMed  Google Scholar 

  64. Rankin LC, Artis D (2018) Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173:554–567

    CAS  PubMed  Google Scholar 

  65. Sasaki Y, Sakai M, Miyazaki S et al (2004) Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 10:347–353

    CAS  PubMed  Google Scholar 

  66. Schreurs R, Baumdick ME, Sagebiel AF et al (2019) Human fetal TNF-α-cytokine-producing CD4(+) effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50:462–476.e468

    CAS  PubMed  Google Scholar 

  67. Sharma AA, Jen R, Butler A et al (2012) The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol 145:61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma D, Padmavathi IV, Tabatabaii SA et al (2021) Late preterm: a new high risk group in neonatology. J Matern Fetal Neonatal Med 34:2717–2730

    PubMed  Google Scholar 

  69. Siegrist CA, Aspinall R (2009) B‑cell responses to vaccination at the extremes of age. Nat Rev Immunol 9:185–194

    CAS  PubMed  Google Scholar 

  70. Siltanen M, Kajosaari M, Pohjavuori M et al (2001) Prematurity at birth reduces the long-term risk of atopy. J Allergy Clin Immunol 107:229–234

    CAS  PubMed  Google Scholar 

  71. Siltanen M, Wehkalampi K, Hovi P et al (2011) Preterm birth reduces the incidence of atopy in adulthood. J Allergy Clin Immunol 127:935–942

    PubMed  Google Scholar 

  72. Simon AK, Hollander GA, Mcmichael A (2015) Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282:20143085

    PubMed  PubMed Central  Google Scholar 

  73. Singer D, Thiede LP, Perez A (2021) Adults born preterm–long-term health risks of former very low birth weight infants. Dtsch Ärztebl Int 118:521–527

    PubMed  PubMed Central  Google Scholar 

  74. Solano ME, Jago C, Pincus MK et al (2011) Highway to health; or How prenatal factors determine disease risks in the later life of the offspring. J Reprod Immunol 90:3–8

    PubMed  Google Scholar 

  75. Stelzer IA, Urbschat C, Schepanski S et al (2021) Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 12:4706

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Teune MJ, Bakhuizen S, Gyamfi Bannerman C et al (2011) A systematic review of severe morbidity in infants born late preterm. Am J Obstet Gynecol 205:374.e371–374.e379

    Google Scholar 

  77. Townsi N, Laing IA, Hall GL et al (2018) The impact of respiratory viruses on lung health after preterm birth. Eur Clin Respir J 5:1487214

    PubMed  PubMed Central  Google Scholar 

  78. Trønnes H, Wilcox AJ, Lie RT et al (2013) The association of preterm birth with severe asthma and atopic dermatitis: a national cohort study. Pediatr Allergy Immunol 24:782–787

    PubMed  PubMed Central  Google Scholar 

  79. Willers M, Ulas T, Völlger L et al (2020) S100A8 and S100A9 are important for postnatal development of gut microbiota and immune system in mice and infants. Gastroenterology 159:2130–2145.e2135

    CAS  PubMed  Google Scholar 

  80. Ygberg S, Nilsson A (2012) The developing immune system—from foetus to toddler. Acta Paediatr 101:120–127

    CAS  PubMed  Google Scholar 

  81. Zazara DE, Belios I, Lücke J et al (2022) Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 44:827–854

    PubMed  PubMed Central  Google Scholar 

  82. Zazara DE, Wegmann M, Giannou AD et al (2020) A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. J Allergy Clin Immunol 145:1641–1654

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Clara Arck.

Ethics declarations

Interessenkonflikt

J.M. Hofer, D.E. Zazara, A. Diemert und P.C. Arck geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Ruben Kuon, Heidelberg

Bettina Toth, Innsbruck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofer, J.M., Zazara, D.E., Diemert, A. et al. Immunologische Konsequenzen bei frühgeborenen Kindern. Gynäkologische Endokrinologie 21, 261–269 (2023). https://doi.org/10.1007/s10304-023-00538-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-023-00538-x

Schlüsselwörter

Keywords

Navigation