Skip to main content
Log in

Uterine natürliche Killerzellen: Freund oder Feind?

Uterine natural killer cells: friend or foe?

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Hintergrund

Natürliche Killerzellen (NK-Zellen) spielen eine entscheidende Rolle bei der Etablierung einer erfolgreichen Schwangerschaft. Sie sind sowohl im peripheren Blut als auch im Endometrium nachweisbar.

Zielsetzung/Material und Methoden

Im Rahmen dieser Arbeit werden Informationen zu uterinen NK-Zellen zusammengetragen mit dem Ziel, einen umfassenden Überblick über ihre Herkunft, Eigenschaften und Funktionen sowie über diagnostische Verfahren zu vermitteln. Gleichzeitig sollen potenzielle Therapieoptionen aufgezeigt werden.

Ergebnisse

NK-Zellen weisen signifikante Unterschiede hinsichtlich ihrer immunmodulatorischen Aktivitäten auf. Etwa 90 % der uterinen NK-Zellen zeigen eine geringe Zytotoxizität, sind jedoch hoch aktiv in der Produktion von Zytokinen. Uterine NK-Zellen nehmen eine entscheidende Rolle ein bei der Kontrolle der Zellinvasion des extravillösen Trophoblasten und dem Umbau der uterinen Spiralarterien. Ein vermehrtes Auftreten uteriner NK-Zellen jedoch wird mit Implantationsstörungen und verschiedenen Schwangerschaftskomplikationen wie Fehlgeburten, Hypertonie, Präeklampsie und fetaler Wachstumsrestriktion assoziiert.

Schlussfolgerung

Ein tief greifendes Verständnis der Implantation und der (Früh‑)Schwangerschaft trägt dazu bei, die Erfolgsraten von Fortpflanzungsmaßnahmen zu erhöhen und Schwangerschaftskomplikationen zu minimieren. Immunmodulatorische Therapien, beispielsweise mit Kortikosteroiden, Lipidinfusionen und Immunglobulinen, werden derzeit bei NK-Zell-Veränderungen angewendet. Die Vergleichbarkeit internationaler Studien gestaltet sich jedoch aufgrund von Unterschieden im Studiendesign, der angewendeten Methodik, der Interventionen sowie der untersuchten Studienpopulation als herausfordernd. Dies erschwert nicht nur die Interpretation der Ergebnisse, sondern auch die Entwicklung evidenzbasierter Therapieansätze.

Abstract

Background

In the context of establishing a successful pregnancy, natural killer (NK) cells play a crucial role. These cells are found in both peripheral blood and the endometrium.

Objective, material and methods

The objective of this study is to provide a comprehensive overview of the origin, characteristics, functions and diagnostic methods concerning uterine NK cells. In addition, potential treatment options are discussed.

Results

Notable variations in cytotoxicity profiles exist among NK cells. Approximately 90% of uterine NK cells demonstrate low cytotoxicity; however, they are highly active in cytokine production. Uterine NK cells play a crucial role in controlling the invasion of extravillous trophoblasts and the remodeling of uterine spiral arteries. An increased concentration of uterine NK cells, however, is associated with implantation disorders and various pregnancy complications, such as miscarriage, hypertension, pre-eclampsia, and fetal growth restriction.

Conclusion

A profound understanding of implantation and (early) pregnancy contributes to increasing the success rates of reproductive interventions and minimizing pregnancy complications. Immunomodulatory therapies, such as corticosteroids, lipid infusions, and immunoglobulins, are currently being employed for NK cell-related alterations; however, the comparability of international studies is challenging due to differences in design, methodology, intervention and study populations. This not only complicates the interpretation of results but also hinders the development of evidence-based treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Erlebacher A (2013) Immunology of the maternal-fetal interface. Annu Rev Immunol 31(1):387–411

    CAS  PubMed  Google Scholar 

  2. Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, Aplin JD et al (2012) Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 26(12):4876–4885

    CAS  PubMed  Google Scholar 

  3. Carter AM (2021) Unique aspects of human placentation. Int J Mol Sci 22(15):8099

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang AW, Alfirevic Z, Turner MA, Drury JA, Small R, Quenby S (2013) A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod 28(7):1743–1752

    CAS  PubMed  Google Scholar 

  5. Kuon RJ, Müller F, Vomstein K, Weber M, Hudalla H, Rösner S et al (2017) Pre-pregnancy levels of peripheral natural killer cells as markers for immunomodulatory treatment in patients with recurrent miscarriage. Arch Immunol Ther Exp 65(4):339–346

    CAS  Google Scholar 

  6. Coulam CB (2021) Intralipid treatment for women with reproductive failures. Am J Reprod Immunol 85(4):13290

    Google Scholar 

  7. Marchand F (1895) On the so-called decidual tumors following normal childbirth, hydatidiform mole and extrauterine pregnancy. Obstet Gynecol 1:419

    Google Scholar 

  8. Male V, Moffett A (2023) Natural killer cells in the human uterine mucosa. Annu Rev Immunol 41(1):127–151

    PubMed  Google Scholar 

  9. King A, Birkby C, Loke YW (1989) Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell Immunol 118(2):337–344

    CAS  PubMed  Google Scholar 

  10. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D (1991) Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 6(6):791–798

    CAS  PubMed  Google Scholar 

  11. Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438

  12. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126(4):458–465

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuon RJ, Vomstein K, Weber M, Müller F, Seitz C, Wallwiener S et al (2017) The “killer cell story” in recurrent miscarriage: Association between activated peripheral lymphocytes and uterine natural killer cells. J Reprod Immunol 119:9–14

    CAS  PubMed  Google Scholar 

  14. Verma S, King A, Loke YW (1997) Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immunol 27(4):979–983

    CAS  PubMed  Google Scholar 

  15. Chen S, Li D, Wang Y, Li Q, Dong Z (2020) Regulation of MHC class I‑independent NK cell education by SLAM family receptors. Adv Immunol 145:159–185. https://doi.org/10.1016/bs.ai.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  16. King A, Gardner L, Loke YW (1996) Evaluation of oestrogen and progesterone receptor expression in uterine mucosal lymphocytes. Hum Reprod 11(5):1079–1082

    CAS  PubMed  Google Scholar 

  17. Okada H, Nakajima T, Sanezumi M, Ikuta A, Yasuda K, Kanzaki H (2000) Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro1. J Clin Endocrinol Metab 85(12):4765–4770

    CAS  PubMed  Google Scholar 

  18. Dosiou C, Giudice LC (2005) Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 26(1):44–62

    CAS  PubMed  Google Scholar 

  19. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF et al (2006) Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 80(3):572–580

    CAS  PubMed  Google Scholar 

  20. Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E et al (2011) CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci U S A 108(6):2402–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanna J, Wald O, Goldman-Wohl D, Prus D, Markel G, Gazit R et al (2003) CXCL12 expression by invasive trophoblasts induces the specific migration of CD16− human natural killer cells. Blood 102(5):1569–1577

    CAS  PubMed  Google Scholar 

  22. Keskin DB, Allan DSJ, Rybalov B, Andzelm MM, Stern JNH, Kopcow HD et al (2007) TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 104(9):3378–3383

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moffett A, Shreeve N (2015) First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod 30(7):1519–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Gao S, Zhao Y, Wang H, Pan Q, Shao Q (2021) Decidual natural killer cells: a good nanny at the maternal-fetal interface during early pregnancy. Front Immunol. https://doi.org/10.3389/fimmu.2021.663660

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ober C, Aldrich CL (1997) HLA‑G polymorphisms: neutral evolution or novel function? J Reprod Immunol 36(1–2):1–21

    CAS  PubMed  Google Scholar 

  26. Moffett A, Colucci F (2015) Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol Rev 267(1):283–297

    CAS  PubMed  Google Scholar 

  27. Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F (2021) Human reproduction update. Uterine natural killer cells: from foe to friend in reproduction, Bd. 27. Oxford University Press, S 720–746

    Google Scholar 

  28. Laban M, Ibrahim EAS, Elsafty MSE, Hassanin AS (2014) Placenta accreta is associated with decreased decidual natural killer (dNK) cells population: a comparative pilot study. Eur J Obstet Gynecol Reprod Biol 181:284–288

    PubMed  Google Scholar 

  29. Chen X, Mariee N, Jiang L, Liu Y, Wang CC, Li TC et al (2017) Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range. Am J Obstet Gynecol 217(6):680.e1–680.e6

    PubMed  Google Scholar 

  30. Lash GE, Bulmer JN, Li TC, Innes BA, Mariee N, Patel G et al (2016) Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. J Reprod Immunol 116:50–59

    CAS  PubMed  Google Scholar 

  31. Kuon RJ, Weber M, Heger J, Santillán I, Vomstein K, Bär C et al (2017) Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol. https://doi.org/10.1111/aji.12721

    Article  PubMed  Google Scholar 

  32. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CWG, Carrington M, Trowsdale J et al (2004) Combinations of maternal KIR and fetal HLA‑C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200(8):957–965

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Milosevic-Stevanovic J, Krstic M, Radovic-Janosevic D, Popovic J, Tasic M, Stojnev S (2016) Number of decidual natural killer cells & macrophages in pre-eclampsia. Indian J Med Res 144(6):823

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rieger L, Segerer S, Bernar T, Kapp M, Majic M, Morr AK et al (2009) Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia—a prospective observational study. Reprod Biol Endocrinol 7(1):132

    PubMed  PubMed Central  Google Scholar 

  35. Du M, Wang W, Huang L, Guan X, Lin W, Yao J et al (2022) Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. J Matern Fetal Neonatal Med 35(6):1028–1035

    CAS  PubMed  Google Scholar 

  36. Quenby S, Bates M, Doig T, Brewster J, Lewis-Jones DI, Johnson PM et al (1999) Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum Reprod 14(9):2386

    CAS  PubMed  Google Scholar 

  37. Von Woon E, Greer O, Shah N, Nikolaou D, Johnson M, Male V (2022) Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum Reprod Update 28(4):548–582

    CAS  Google Scholar 

  38. Megli CJ, Coyne CB (2022) Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 20(2):67–82

    CAS  PubMed  Google Scholar 

  39. Siewiera J, El Costa H, Tabiasco J, Berrebi A, Cartron G, Bouteiller P et al (2013) Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog 9(4):e1003257

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Toth B, Baston-Büst DM, Behre HM, Bielfeld A, Bohlmann M, Bühling K et al (2019) Diagnosis and therapy before assisted reproductive treatments. Guideline of the DGGG, OEGGG and SGGG (S2k level, AWMF register number 015-085, february 2019)—part 1, basic assessment of the woman. Geburtshilfe Frauenheilkd 79(12):1278–1292

    PubMed  PubMed Central  Google Scholar 

  41. Toth B, Bohlmann M, Hancke K, Kuon R, Nawroth F, von Otte S et al (2023) Recurrent miscarriage: diagnostic and therapeutic procedures. Guideline of the DGGG, OEGGG and SGGG (S2k-level, AWMF registry no. 015/050, May 2022). Geburtshilfe Frauenheilkd 83(01):49–78

    PubMed  Google Scholar 

  42. Coulam CB, Acacio B (2012) Does immunotherapy for treatment of reproductive failure enhance live births? Am J Reprod Immunol 67(4):296–304

    CAS  PubMed  Google Scholar 

  43. Polanski LT, Barbosa MAP, Martins WP, Baumgarten MN, Campbell B, Brosens J et al (2014) Interventions to improve reproductive outcomes in women with elevated natural killer cells undergoing assisted reproduction techniques: a systematic review of literature. Hum Reprod 29(1):65–75

    CAS  PubMed  Google Scholar 

  44. Quenby S, Kalumbi C, Bates M, Farquharson R, Vince G (2005) Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril 84(4):980–984

    CAS  PubMed  Google Scholar 

  45. Ensom MHH, Stephenson MD (2011) A two-center study on the pharmacokinetics of intravenous immunoglobulin before and during pregnancy in healthy women with poor obstetrical histories. Hum Reprod 26(9):2283–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Christiansen O, Larsen E, Egerup P, Lunoee L, Egestad L, Nielsen H (2015) Intravenous immunoglobulin treatment for secondary recurrent miscarriage: a randomised, double-blind, placebo-controlled trial. BJOG 122(4):500–508

    CAS  PubMed  Google Scholar 

  47. Meng L, Lin J, Chen L, Wang Z, Liu M, Liu Y et al (2016) Effectiveness and potential mechanisms of intralipid in treating unexplained recurrent spontaneous abortion. Arch Gynecol Obstet 294(1):29–39

    CAS  PubMed  Google Scholar 

  48. Kumar P, Marron K, Harrity C (2021) Intralipid therapy and adverse reproductive outcome: is there any evidence? Reprod Fertil 2(3):173–186

    PubMed  PubMed Central  Google Scholar 

  49. Dakhly DMR, Bayoumi YA, Sharkawy M, Gad Allah SH, Hassan MA, Gouda HM et al (2016) Intralipid supplementation in women with recurrent spontaneous abortion and elevated levels of natural killer cells. Int J Gynecol Obstet 135(3):324–327

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.-J. Kuon.

Ethics declarations

Interessenkonflikt

R.-J. Kuon und B. Toth sind Gesellschafter der Reprognostics GbR Mannheim. E. Reiser und C. Zhang geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Ruben Kuon, Heidelberg

Bettina Toth, Innsbruck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuon, RJ., Reiser, E., Zhang, C. et al. Uterine natürliche Killerzellen: Freund oder Feind?. Gynäkologische Endokrinologie 21, 254–260 (2023). https://doi.org/10.1007/s10304-023-00533-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-023-00533-2

Schlüsselwörter

Keywords

Navigation