Skip to main content
Log in

Optimales Protokoll für die Übertragung kryokonservierter Embryonen

Optimal protocol for the transfer of cryopreserved embryos

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Die Rate an Auftauzyklen (Kryozyklen) hat in den vergangenen zehn Jahren weltweit aus vielfältigen Gründen stetig zugenommen. Beim Vergleich und der Optimierung der einzelnen Behandlungsprotokolle wird das Augenmerk vor allem auf die Schwangerschafts‑, Fehl- und Lebendgeburtenraten sowie auf die peripartale und perinatale Gesundheit gelegt. Der vorliegende Beitrag gibt eine Übersicht zu den gängigen Behandlungsprotokollen und vergleicht anhand der aktuellen Literatur klinische Effektivitätsparameter, mütterliche und kindliche Risiken wie auch Praktikabilitäts- und Kostenaspekte.

Abstract

The rate of frozen-thawed embryo transfer cycles has increased steadily over the past 10 years due to a variety of factors. The comparison and optimization of the individual treatment protocols focuses primarily on pregnancy, miscarriage and live birth rates as well as on peripartum and perinatal health. Based on the current literature this article provides an overview of the common treatment protocols and compares clinical effectiveness, maternal and neonatal outcomes as well as practicability and cost issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Deutsches IVF Register (DIR) (2020) Jahrbuch 2019. J Reproduktionsmed Endokrinol 17(5 Sonderheft 1):11

  2. Ishihara O, Araki R, Kuwahara A et al (2014) Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril 101(1):128–133

    Article  PubMed  Google Scholar 

  3. Wennerholm UB, Henningsen AK, Romundstad LB et al (2013) Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod 28(9):2545–2553

    Article  PubMed  Google Scholar 

  4. Zhang B, Wei D, Legro RS et al (2018) Obstetric complications after frozen versus fresh embryo transfer in women with polycystic ovary syndrome: results from a randomized trial. Fertil Steril 109(2):324–329. https://doi.org/10.1016/j.fertnstert.2017.10.020

  5. Berntsen S, Pinborg A (2018) Large for gestational age and macrosomia in singletons born after frozen/thawed embryo transfer (FET) in assisted reproductive technology (ART). Birth Defects Res 110(8):630–643

    Article  CAS  PubMed  Google Scholar 

  6. Wong KM, van Wely M, Mol F et al (2017) Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011184.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Opdahl S, Henningsen AA, Tiitinen A et al (2015) Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod 30(7):1724–1731

    Article  CAS  PubMed  Google Scholar 

  8. Maheshwari A, Raja EA, Bhattacharya S (2016) Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril 106(7):1703–1708

    Article  PubMed  Google Scholar 

  9. Sha T, Yin X, Cheng W et al (2018) Pregnancy-related complications and perinatal outcomes resulting from transfer of cryopreserved versus fresh embryos in vitro fertilization: a meta-analysis. Fertil Steril 109(2):330–342e9

    Article  PubMed  Google Scholar 

  10. Maheshwari A, Pandey S, Amalraj Raja E et al (2018) Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update 24(1):35–58

    Article  PubMed  Google Scholar 

  11. Sites CK, Wilson D, Barsky M et al (2017) Embryo cryopreservation and preeclampsia risk. Fertil Steril 108(5):784–790

    Article  PubMed  Google Scholar 

  12. Chen ZJ, Shi Y, Sun Y et al (2016) Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 375(6):523–533

    Article  PubMed  Google Scholar 

  13. von Versen-Höynck F, Schaub AM, Chi YY et al (2019) Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 73(3):640–649

    Article  Google Scholar 

  14. Ginstrom Ernstad E, Wennerholm UB, Khatibi A et al (2019) Neonatal and maternal outcome after frozen embryo transfer: Increased risks in programmed cycles. Am J Obstet Gynecol 221(2):126e1–126e18

    Article  Google Scholar 

  15. Noyes RW, Hertig AT, Rock J (2019) Reprint of: dating the endometrial biopsy. Fertil Steril 112(4 Suppl 1):e93–e115

    Article  CAS  PubMed  Google Scholar 

  16. Bergh PA, Navot D (1992) The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 58(3):537–542

    Article  CAS  PubMed  Google Scholar 

  17. Murray MJ, Meyer WR, Zaino RJ et al (2004) A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril 81(5):1333–1343

    Article  PubMed  Google Scholar 

  18. Neumann K, Depenbusch M, Schultze-Mosgau A et al (2020) Characterization of early pregnancy placental progesterone production by use of dydrogesterone in programmed frozen-thawed embryo transfer cycles. Reprod Biomed Online 40(5):743–751

    Article  CAS  PubMed  Google Scholar 

  19. Ghobara T, Gelbaya TA, Ayeleke RO (2017) Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003414.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huberlant S, Vaast M, Anahory T et al (2018) Natural cycle for frozen-thawed embryo transfer: spontaneous ovulation or triggering by HCG. Gynecol Obstet Fertil Senol 46(5):466–473

    CAS  PubMed  Google Scholar 

  21. Mackens S, Stubbe A, Santos-Ribeiro S et al (2020) To trigger or not to trigger ovulation in a natural cycle for frozen embryo transfer: a randomized controlled trial. Hum Reprod 35(5):1073–1081

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Tian L, Li P et al (2020) Clinical outcomes of frozen-thawed embryo transfer in natural cycles with spontaneous or induced ovulation: a retrospective cohort study from 1937 cycles. Reprod Sci. https://doi.org/10.1007/s43032-020-00344-x

  23. Montagut M, Santos-Ribeiro S, De Vos M et al (2016) Frozen-thawed embryo transfers in natural cycles with spontaneous or induced ovulation: the search for the best protocol continues. Hum Reprod 31(12):2803–2810

    Article  CAS  PubMed  Google Scholar 

  24. Lin J, Zhao J, Hao G et al (2020) Maternal and neonatal complications after natural vs. Hormone replacement therapy cycle regimen for frozen single Blastocyst transfer. Front Med 7:338

    Article  Google Scholar 

  25. Melnick AP, Setton R, Stone LD et al (2017) Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women. J Assist Reprod Genet 34(10):1325–1331

    Article  PubMed  PubMed Central  Google Scholar 

  26. Orvieto R, Feldman N, Lantsberg D et al (2016) Natural cycle frozen-thawed embryo transfer-can we improve cycle outcome? J Assist Reprod Genet 33(5):611–615

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guan Y, Fan H, Styer AK et al (2016) A modified natural cycle results in higher live birth rate in vitrified-thawed embryo transfer for women with regular menstruation. Syst Biol Reprod Med 62(5):335–342

    Article  PubMed  Google Scholar 

  28. Agha-Hosseini M, Hashemi L, Aleyasin A et al (2018) Natural cycle versus artificial cycle in frozen-thawed embryo transfer: a randomized prospective trial. Turk J Obstet Gynecol 15(1):12–17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masrour M (2018) The study of natural versus hormone replacement therapy cycles in frozen embryo transfer in infertile couples on pregnancy outcome: a double blind randomized trial. Acta Med Mediterr 34:1765–1769

    Google Scholar 

  30. Cerrillo M, Herrero L, Guillen A et al (2017) Impact of endometrial preparation protocols for frozen embryo transfer on live birth rates. Rambam Maimonides Med J 8(2):e0020. https://doi.org/10.5041/RMMJ.10297

  31. Sahin G, Acet F, Calimlioglu N et al (2020) Live birth after frozen-thawed embryo transfer: which endometrial preparation protocol is better? J Gynecol Obstet Hum Reprod 49(8):101782

    Article  PubMed  Google Scholar 

  32. Liu X, Shi W, Shi J (2020) Natural cycle frozen-thawed embryo transfer in young women with regular menstrual cycles increases the live-birth rates compared with hormone replacement treatment: a retrospective cohort study. Fertil Steril 113(4):811–817

    Article  CAS  PubMed  Google Scholar 

  33. Jing S, Li XF, Zhang S et al (2019) Increased pregnancy complications following frozen-thawed embryo transfer during an artificial cycle. J Assist Reprod Genet 36(5):925–933

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tatsumi T, Jwa SC, Kuwahara A et al (2017) Pregnancy and neonatal outcomes following letrozole use in frozen-thawed single embryo transfer cycles. Hum Reprod 32(6):1244–1248

    Article  CAS  PubMed  Google Scholar 

  35. Aleyasin A, Aghahosseini M, Safdarian L et al (2017) Can letrozole plus HMG protocol improve pregnancy outcomes in frozen-thawed embryo transfer? An RCT. Int J Reprod Biomed 15(2):83–86

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Liu H, Wang Y et al (2019) Letrozole use during frozen embryo transfer cycles in women with polycystic ovary syndrome. Fertil Steril 112(2):371–377

    Article  CAS  PubMed  Google Scholar 

  37. Fatemi HM, Kyrou D, Bourgain C et al (2010) Cryopreserved-thawed human embryo transfer: spontaneous natural cycle is superior to human chorionic gonadotropin-induced natural cycle. Fertil Steril 94(6):2054–2058

    Article  CAS  PubMed  Google Scholar 

  38. Groenewoud ER, Cohlen BJ, Al-Oraiby A et al (2016) A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod 31(7):1483–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang A, Murugappan G, Kort J et al (2019) Hormone replacement versus natural frozen embryo transfer for euploid embryos. Arch Gynecol Obstet 300(4):1053–1060. https://doi.org/10.1007/s00404-019-05251-4

  40. Weissman A, Horowitz E, Ravhon A et al (2011) Spontaneous ovulation versus HCG triggering for timing natural-cycle frozen-thawed embryo transfer: a randomized study. Reprod Biomed Online 23(4):484–489

    Article  CAS  PubMed  Google Scholar 

  41. Van der Auwera I, Meuleman C, Koninckx PR (1994) Human menopausal gonadotrophin increases pregnancy rate in comparison with clomiphene citrate during replacement cycles of frozen/thawed pronucleate ova. Hum Reprod 9(8):1556–1560

    Article  PubMed  Google Scholar 

  42. Peigné M, Devouche E, Ferraretto X et al (2019) Higher live birth rate with stimulated rather than artificial cycle for frozen-thawed embryo transfer. Eur J Obstet Gynecol Reprod Biol 243:144–149

    Article  PubMed  CAS  Google Scholar 

  43. Saito K, Kuwahara A, Ishikawa T et al (2019) Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod 34(8):1567–1575. https://doi.org/10.1093/humrep/dez079

  44. Wang B, Zhu Q, Wang Y (2020) Pregnancy outcomes after different cycle regimens for frozen-thawed embryo transfer: a retrospective study using propensity score matching. Front Med 7:327

    Article  CAS  Google Scholar 

  45. Roelens C, Racca A, Mackens S et al (2020) Artificially prepared frozen embryo transfer cycles are associated with an increased risk of preeclampsia. Paper presented at the 36th Annual Meeting of the European Society for Human Reproduction and Embryology.

    Google Scholar 

  46. Wang Z, Liu H, Song H et al (2020) Increased risk of pre-eclampsia after frozen-thawed embryo transfer in programming cycles. Front Med 7:104

    Article  Google Scholar 

  47. Wang B, Zhang J, Zhu Q et al (2020) Effects of different cycle regimens for frozen embryo transfer on perinatal outcomes of singletons. Hum Reprod 35(7):1612–1622

    Article  CAS  PubMed  Google Scholar 

  48. Makhijani R, Bartels C, Godiwala P et al (2020) Maternal and perinatal outcomes in programmed versus natural vitrified-warmed blastocyst transfer cycles. Reprod Biomed Online 41(2):300–308

    Article  PubMed  Google Scholar 

  49. Zong L, Liu P, Zhou L et al (2020) Increased risk of maternal and neonatal complications in hormone replacement therapy cycles in frozen embryo transfer. Reprod Biol Endocrinol 18(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. von Versen-Höynck F, Schaub AM, Chi YY et al (2019) Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 73(3):640–649

    Article  CAS  Google Scholar 

  51. Conrad KP, Baker VL (2013) Corpus luteal contribution to maternal pregnancy physiology and outcomes in assisted reproductive technologies. Am J Physiol Regul Integr Comp Physiol 304(2):R69–R72

    Article  CAS  PubMed  Google Scholar 

  52. Conrad KP, Graham GM, Chi YY et al (2019) Potential influence of the corpus luteum on circulating reproductive and volume regulatory hormones, angiogenic and immunoregulatory factors in pregnant women. Am J Physiol Endocrinol Metab 317(4):E677–E685. https://doi.org/10.1152/ajpendo.00225.2019

  53. von Versen-Höynck F, Strauch NK, Liu J et al (2019) Effect of mode of conception on maternal serum relaxin, creatinine, and sodium concentrations in an infertile population. Reprod Sci 26(3):412–419. https://doi.org/10.1177/1933719118776792

  54. Wiegel RE, Danser AHJ, Steegers-Theunissen RP et al (2020) Determinants of maternal renin-angiotensin-aldosterone-system activation in early pregancy: insights from 2 cohorts. J Clin Endocrinol Metab 105(11):1–13

    Article  Google Scholar 

  55. von Versen-Höynck F, Narasimhan P, Selamet Tierney ES et al (2019) Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension 73(3):680–690

    Article  CAS  Google Scholar 

  56. Lin J, Wang N, Huang J et al (2019) Pregnancy and neonatal outcomes of hMG stimulation with or without letrozole in endometrial preparation for frozen-thawed embryo transfer in ovulatory women: a large retrospective cohort study. Drug Des Devel Ther 13:3867–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang J, Park J, Chung D et al (2018) Comparison of the clinical outcome of frozen-thawed embryo transfer with and without pretreatment with a gonadotropin-releasing hormone agonist. Obstet Gynecol Sci 61(4):489–496

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saito K, Miyado K, Yamatoya K et al (2017) Increased incidence of post-term delivery and Cesarean section after frozen-thawed embryo transfer during a hormone replacement cycle. J Assist Reprod Genet 34(4):465–470

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lathi RB, Chi YY, Liu J et al (2015) Frozen blastocyst embryo transfer using a supplemented natural cycle protocol has a similar live birth rate compared to a programmed cycle protocol. J Assist Reprod Genet 32(7):1057–1062

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cardenas Armas DF, Penarrubia J, Goday A et al (2019) Frozen-thawed blastocyst transfer in natural cycle increase implantation rates compared artificial cycle. Gynecol Endocrinol 35(10):873–877

    Article  PubMed  Google Scholar 

  61. Gelbe Liste Pharmindex Online Medizinische Medien Informations GmbH (MMI). https://www.gelbe-liste.de. Zugegriffen: 27. Nov. 2020

  62. Bundesamt für Justiz Gebührenordnung für Ärzte, Anlage Gebührenverzeichnis für ärztliche Leistungen. http://www.gesetze-im-internet.de/go__1982/anlage.html. Zugegriffen: 27. Nov. 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. von Versen-Höynck M.Sc..

Ethics declarations

Interessenkonflikt

C. Trautmann und F. von Versen-Höynck geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Griesinger, Lübeck

Weitere detaillierte Übersichten zu den Vergleichen klinischer Verläufe sind bei der korrespondierenden Autorin erhältlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trautmann, C., von Versen-Höynck, F. Optimales Protokoll für die Übertragung kryokonservierter Embryonen. Gynäkologische Endokrinologie 19, 133–142 (2021). https://doi.org/10.1007/s10304-020-00373-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-020-00373-4

Schlüsselwörter

Keywords

Navigation