Gynäkologische Endokrinologie

, Volume 15, Issue 2, pp 153–163 | Cite as

Das Post-Finasterid-Syndrom



Das Post-Finasterid-Syndrom (PFS) beschreibt eine langfristige Störung der Sexualfunktion sowie psychische und kognitive Veränderungen, die während oder nach der Behandlung einer androgenetischen Alopezie (AGA) mit 1 mg Finasterid pro Tag bzw. während oder nach der Therapie einer benignen Prostatahyperplasie (BPH) mit 5 mg/Tag auftreten und nach Absetzen persistieren. Die günstige Wirkung von Finasterid auf AGA und BPH beruht auf einem starken Abfall der 5α-Dihydrotestosteron(DHT)-Konzentration aufgrund einer irreversiblen Blockade der 5α-Reduktase in den Sexualorganen, dem Gehirn, der Haut und vielen anderen Organen und Geweben. Dadurch wird die Umwandlung von Testosteron in das 2,5-mal stärkere Androgen DHT gehemmt. Zu den persistierenden Nebenwirkungen zählen sexuelle Dysfunktionen, Depression, Angst und kognitive Störungen, welche die Lebensqualität beeinträchtigen. Die psychischen und mentalen Nebenwirkungen gehen von der 5α-Reduktase-Blockade im zentralen Nervensystem aus, die zu einem lokalen Abfall von DHT und anderen 3α,5α-reduzierten neuroaktiven Steroiden, z. B. Allopregnanolon, führt. Die Ätiologie der irreversiblen Veränderungen ist nicht geklärt. Möglicherweise spielen dabei epigenetische Prozesse eine Rolle. Zufriedenstellende Therapieoptionen stehen bisher nicht zur Verfügung.


5α-Reduktase-Hemmer Dihydrotestosteron Sexuelle Dysfunktion Depression Kognitive Störungen 

Post-finasteride syndrome


Post-finasteride syndrome (PFS) describes a long-term disorder of sexual function, mental and cognitive alterations, which occur during and persist after treatment of androgenetic alopecia (AGA) with 1 mg/day finasteride or following treatment of benign prostatic hyperplasia (BPH) with 5 mg/day finasteride. The favorable effect of finasteride on AGA and BPH is due to a severe reduction in the concentration of 5α‑dihydrotestosterone (DHT) resulting from an irreversible blockade of 5α‑reductase in the sex organs, the brain, the skin, and many other organs and tissues. This inhibits the transformation of testosterone to the 2.5 times more potent androgen DHT. The persisting side effects include sexual dysfunction, depression, anxiety and cognitive disorders, which impair the quality of life. The mental and psychological side effects are derived from the blockade of 5α‑reductase in the central nervous system, which leads to a local reduction of DHT and other 3α,5α-reduced neuroactive steroids, including allopregnanolone. The etiology of the irreversible alterations is unknown. Epigenetic processes possibly play a role. Satisfactory therapy options are not currently available.


5α-reductase inhibitors Dihydrotestosterone Sexual dysfunction, physiological Depression Cognitive disorders 


Einhaltung ethischer Richtlinien


H. Kuhl und I. Wiegratz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.


  1. 1.
    Ali AK et al (2015) Persistent sexual dysfunction and suicidal ideation in young men treated with low-dose finasteride: a pharmacovigilance study. Pharmacotherapy 35:687–695CrossRefPubMedGoogle Scholar
  2. 2.
    US Patent 5962442 (1996) Irreversible inhibition of human 5α-reductaseGoogle Scholar
  3. 3.
    Ohtawa M et al (1991) Pharmacokinetics and biochemical efficacy after single and multiple oral administration of N‑(2-methyl-2-propyl)-3-oxo-4-aza-5α-androst-1-ene-17β-carboxamide, a new type of specific competitive inhibitor of testosterone 5α‑reductase, in volunteers. Eur J Drug Metab Pharmacokin 16:15–21CrossRefGoogle Scholar
  4. 4.
    Peters DH, Sorkin EM (1993) Finasteride – a review of its potential in the treatment of benign prostatic hyperplasia. Drugs 46:177–208CrossRefPubMedGoogle Scholar
  5. 5.
    Carlin JR (1992) Disposition and pharmacokinetics of [14C]finasteride after oral administration in humans. Drug Metab Dispos 20:148–155PubMedGoogle Scholar
  6. 6.
    Huskey SW et al (1995) Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride. Drug Metab Dispos 23:1126–1135PubMedGoogle Scholar
  7. 7.
    Yamana K et al (2010) Human type 3 5α-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. Horm Mol Biol Clin Invest 2(3):293–299Google Scholar
  8. 8.
    Isaacs JT (2015) Lessons learned about prostatic transformation from the age-related methylation of 5α-reductase type 2 gene. Am J Pathol 185:614–616CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guengerich FP (1990) Mechanism-based inactivation of human liver microsomal cytochrome P‑450 IIIA4 by gestodene. Chem Res Toxicol 3:363–371CrossRefPubMedGoogle Scholar
  10. 10.
    Taubert HD, Kuhl H (1995) Kontrazeption mit Hormonen, 2. Aufl. Thieme, Stuttgart, S 83–109Google Scholar
  11. 11.
    Gormley DJ et al (1990) Effects of finasteride (MK-906), a 5α-reductase inhibitor, on circulating androgens in male volunteers. J Clin Endocrinol Metab 70:1136–1141CrossRefPubMedGoogle Scholar
  12. 12.
    Gormley GJ et al (1992) The effect of finasteride in men with benign prostatic hyperplasia. N Engl J Med 327:1185–1191CrossRefPubMedGoogle Scholar
  13. 13.
    Stoner E (1990) The clinical development of a 5α-reductase inhibitor, finasteride. J Steroid Biochem Mol Biol 37:375–378CrossRefPubMedGoogle Scholar
  14. 14.
    Stanczyk FZ et al (2013) Effect of finasteride on serum levels of androstenedione, testosterone and their 5α-reduced metabolites in men at risk for prostate cancer. J Steroid Biochem Mol Biol 138:10–16CrossRefPubMedGoogle Scholar
  15. 15.
    Upreti R et al (2015) Simultaneous pharmacokinetic and pharmacodynamic analysis of 5α-reductase inhibitors and androgens by liquid chromatography tandem mass spectrometry. Talanta 131:728–735CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Caruso D et al (2015) Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma. J Steroid Biochem Mol Biol 146:74–79CrossRefPubMedGoogle Scholar
  17. 17.
    Melcangi RC et al (2013) Neuroactive steroid levels are modified in cerebrospinal fluid and plasma of post-finasteride patients showing persistent sexual side effects and anxious/depressive symptomatology. J Sex Med 10:2598–2603CrossRefPubMedGoogle Scholar
  18. 18.
    Uzunova V et al (2006) Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 186:351–361CrossRefGoogle Scholar
  19. 19.
    Uzunova V et al (1998) Increase in the cerebral fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 95:3239–3244CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kuhl H (Hrsg) (2002) Sexualhormone und Psyche. Grundlagen, Symptomatik, Erkrankungen, Therapie. Thieme, Stuttgart, S 9–17Google Scholar
  21. 21.
    Traish AM et al (2015) Adverse effects of 5α-reductase inhibitors: what do we know, don’t know, and need to know? Rev Endocr Metab Disord 16:177–198CrossRefPubMedGoogle Scholar
  22. 22.
    Bitran D et al (1991) Anxiolytic effects of 3α-hydroxy-5α[β]-pregnan-20-one: endogenous metabolites of progesterone that are active at the GABA A receptor. Brain Res 561:157–161CrossRefPubMedGoogle Scholar
  23. 23.
    Andersen JT et al (1995) Can finasteride reverse the progress of benign prostatic hyperplasia? A two-year placebo-controlled study. Urology 46:631–637CrossRefPubMedGoogle Scholar
  24. 24.
    Kaufman KD et al (1998) Finasteride in the treatment of men with androgenetic alopecia. J Am Acad Dermatol 39:578–589CrossRefPubMedGoogle Scholar
  25. 25.
    Wessells H et al (2003) Incidence and severity of sexual adverse experiences in finasteride and placebo-treated men with benign prostatic hyperplasia. Urology 61:579–584CrossRefPubMedGoogle Scholar
  26. 26.
    Ferzoco RM, Ruddy KJ (2016) The epidemiology of male breast cancer. Curr Oncol Rep 18:1–6CrossRefPubMedGoogle Scholar
  27. 27.
    Bird ST et al (2013) Male breast cancer and 5α-reductase inhibitors finasteride and dutasteride. J Urol 190:1811–1814CrossRefPubMedGoogle Scholar
  28. 28.
    Duijnhoven RG et al (2014) Long-term use of 5α-reductase inhibitors and the risk of male breast cancer. Cancer Causes Control 25:1577–1582CrossRefPubMedGoogle Scholar
  29. 29.
    Krenzer LK et al (2000) Effect of androgen deficiency on the human Meibomian gland and ocular surface. J Clin Endocrinol Metab 85:4874–4882PubMedGoogle Scholar
  30. 30.
    Giltay et al (2010) Effects of testosterone supplementation on depressive symptoms and sexual dysfunction in hypogonadal men with the metabolic syndrome. J Sex Med 7:2572–2582CrossRefPubMedGoogle Scholar
  31. 31.
    Traish AM et al (2011) Adverse effects of 5α-reductase inhibitors therapy: persistent diminished libido and erectile dysfunction and depression in a subset of patients. J Sex Med 8:872–884CrossRefPubMedGoogle Scholar
  32. 32.
    Almeida OP et al (2008) Low free testosterone concentrations as a potentially treatable cause of depressive symptoms in older men. Arch Gen Psychiatry 65:283–289CrossRefPubMedGoogle Scholar
  33. 33.
    Rahimi-Ardabili B et al (2006) Finasterid induced depression: a prospective study. BMC Clin Pharmacol 6:7. doi: 10.1186/1472-6904-6-7 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Altomare G, Capella GL (2002) Depression circumstantially related to administration of finasteride for androgenetic alopecia. J Dermatol 29:665–669CrossRefPubMedGoogle Scholar
  35. 35.
    Lakryc EM et al (2003) The benefits of finasteride for hirsute women with polycystic ovary syndrome or idiopathic hirsutism. Gynecol Endocrinol 17(1):57–63CrossRefPubMedGoogle Scholar
  36. 36.
    Townsend KA, Marlowe KF (2004) Relative safety and efficacy of finasteride for treatment of hirsutism. Ann Pharmacother 38:1070–1073CrossRefPubMedGoogle Scholar
  37. 37.
    Price VH et al (2000) Lack of efficacy of finasteride in postmenopausal women with androgenetic alopecia. J Am Acad Dermatol 43:768–776CrossRefPubMedGoogle Scholar
  38. 38.
    Shum KW et al (2002) Hair loss in women with hyperandrogenism: four cases responding to finasteride. J Am Acad Dermatol 47:733–739CrossRefPubMedGoogle Scholar
  39. 39.
    Stout SM, Stumpf JL (2010) Finasteride treatment of hair loss in women. Ann Pharmacother 44:1090–1097CrossRefGoogle Scholar
  40. 40.
    Seale LR et al (2016) Side effects related to 5α-reductase inhibitor treatment of hair loss in women: a review. J Drugs Dermatol 15:414–419PubMedGoogle Scholar
  41. 41.
    Ganzer CA et al (2015) Persistent sexual, emotional, and cognitive impairment post-finasteride: a survey of men reporting symptoms. Am J Mens Health 9:222–228CrossRefPubMedGoogle Scholar
  42. 42.
    Irwig MS (2012) Depressive symptoms and suicidal thoughts among former users of finasteride with persistent sexual side effects. J Clin Psychiatry 73:1220–1223CrossRefPubMedGoogle Scholar
  43. 43.
    Mondaini N et al (2007) Finasteride 5 mg and sexual side effects: how many of these are related to a nocebo phenomenon? J Sex Med 4:1708–1712CrossRefPubMedGoogle Scholar
  44. 44.
    Ganzer CA et al (2016) Emotional consequences of finasteride: fool’s gold. Am J Men’s Health. doi: 10.1177/1557988316631624 PubMedGoogle Scholar
  45. 45.
    Cecchin E et al (2014) A pharmacogenetic survey of androgen receptor (CAG)n and (GGN)n polymorphisms in patients experiencing long term side effects after finasteride discontinuation. Int J Biol Markers 29(4):e310–e316CrossRefPubMedGoogle Scholar
  46. 46.
    Baculescu N (2013) The role of androgen receptor activity mediated by the CAG repeat polymorphism in the pathogenesis of PCOS. J Med Life 6(1):1–9Google Scholar
  47. 47.
    Ge R et al (2015) DNA methyl transferase 1 reduces expression of SRD5A2 in the aging adult prostate. Am J Pathol 185:870–882CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bechis SK et al (2015) Age and obesity promote methylation and suppression of 5α-reductase 2: Implications for personalized therapy of benign prostatic hyperplasia. J Urol 194:1031–1037CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kigar SL, Auger AP (2013) Epigenetic mechanisms may underlie the aetiology of sex differences in mental health risk and resilience. J Neuroendocrinol 25:1141–1150CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Grayson DR, Guidotti A (2013) The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacol Rev 38:138–166CrossRefGoogle Scholar
  51. 51.
    Hintikka J et al (2009) Hypogonadism, decreased sexual desire, and long-term depression in middle aged men. J Sex Med 6:2049–2057CrossRefPubMedGoogle Scholar
  52. 52.
    Rizvi SJ et al (2010) The relationship between testosterone and sexual function in depressed and healthy men. J Sex Med 7:816–825CrossRefPubMedGoogle Scholar
  53. 53.
    Ly LP et al (2001) A double-blind, placebo-controlled, randomized clinical trial of transdermal dihydrotestosterone gel on muscular strength, mobility, and quality of life in older men with partial androgen deficiency. J Clin Endocrinol Metab 86:4078–4088CrossRefPubMedGoogle Scholar
  54. 54.
    Kunelius P et al (2002) The effects of transdermal dihydrotestosterone in the aging male: a prospective, randomized, double blind study. J Clin Endocrinol Metab 87:1467–1472CrossRefPubMedGoogle Scholar
  55. 55.
    Kennedy SH, Rizvi S (2009) Sexual dysfunction, depression, and the impact of antidepressants. J Clin Psychopharmacol 29:157–164CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.AschaffenburgDeutschland
  2. 2.VivaNeo Kinderwunschzentrum WiesbadenWiesbadenDeutschland
  3. 3.VivaNeo Kinderwunschpraxis FrankfurtFrankfurt am MainDeutschland

Personalised recommendations