Skip to main content
Log in

Endokrine Disruptoren

Schädliche Wirkungen auf den weiblichen Organismus

Endocrine disruptors

Adverse effects on the female organism

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Hintergrund

Jeder von uns ist stetig einem Cocktail von Substanzen ausgesetzt, die endokrin disruptiv wirken könnten. Erfahrungen mit Substanzen wie Diethylstilbestrol haben gezeigt, dass die weiblichen Reproduktionsorgane in sensiblen Entwicklungsphasen durch Zufuhr exogener Hormone irreversibel geschädigt werden können. Es ist daher sehr wichtig, sich mit dieser Problematik auseinanderzusetzen.

Zielsetzung

Es sollen die schädlichen Wirkungen endokriner Disruptoren auf die weiblichen Reproduktionsorgane dargestellt werden. Zusätzlich werden Besonderheiten der Toxizität dieser Substanzen aufgezeigt.

Material und Methoden

Ausgewählte Literatur wurde gesichtet und hinsichtlich schädlicher Effekte der endokrinen Disruptoren auf die weiblichen Reproduktionsorgane ausgewertet.

Ergebnisse

Die Mehrzahl der Erkenntnisse zur negativen Wirkung von endokrinen Disruptoren auf den weiblichen Organismus wird aus Tierstudien abgeleitet. Beobachtete Toxizitäten betreffen alle weiblichen Reproduktionsorgane (Ovar, Uterus, Vagina) und den Zeitpunkt der sexuellen Reifung. Die Effekte umfassen u. a. das Syndrom polyzystischer Ovarien, Zyklusanomalien, Endometriose, Schwangerschaftskomplikationen und Uterusmyome. Hierbei wird deutlich, dass sich die Schäden häufig erst mit erheblichem zeitlichem Abstand zur Exposition manifestieren.

Schlussfolgerungen

Expositionen mit endokrinen Disruptoren können die weiblichen Reproduktionsorgane schädigen. Embryonen, Feten und Neugeborene reagieren dabei viel sensibler als erwachsene Frauen. Inwieweit unsere Gesundheit durch die stetige Aufnahme geringer Mengen verschiedener endokriner Disruptoren aus der Umwelt beeinträchtigt wird, ist sehr schwer abzuschätzen. Diese Problematik bleibt daher weiterhin im Fokus der toxikologischen Forschung.

Abstract

Background

We are constantly exposed to a cocktail of substances that could act as endocrine disruptors. Experiences with substances like diethylstilbestrol have proven that the female reproductive organs can be damaged irreversibly by exposure to exogenous hormones during sensitive developmental stages. It is therefore necessary to address this important issue.

Objectives

The adverse effects of endocrine disruptors on the female reproductive organs are summarized. In addition, special aspects of the toxicity of these substances are identified.

Materials and methods

Selected literature on the adverse effects of endocrine disruptors on female reproductive organs was screened and evaluated.

Results

The majority of findings on the adverse effects of endocrine disruptors on the female organism are derived from animal studies. Observed toxicities affect all female reproductive organs (ovaries, uterus, vagina) and the timing of sexual maturation. The effects include polycystic ovary syndrome, altered cycliscity, endometriosis, pregnancy complications, and uterine fibroids. Importantly, the damage does not usually manifest directly after exposition, but after a considerable temporal interval.

Conclusion

Exposure to endocrine disrupters can damage the female reproductive organs. Embryos, fetuses, and newborn babies are much more sensitive than adult women. The extent to which our health is affected by the continuous intake of low quantities of various endocrine disrupters from the environment is very difficult to estimate. Endocrine disruptors therefore remain in the focus of toxicological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baird DD, Newbold R (2005) Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol 20:81–84

    Article  CAS  PubMed  Google Scholar 

  2. Conolly RB, Lutz WK (2004) Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 77:151–157

    Article  CAS  PubMed  Google Scholar 

  3. Costa EM, Spritzer PM, Hohl A et al (2014) Effects of endocrine disruptors in the development of the female reproductive tract. Arq Bras Endocrinol Metabol 58:153–161

    Article  PubMed  Google Scholar 

  4. Crain DA, Janssen SJ, Edwards TM et al (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90:911–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cummings AM, Hedge JM, Birnbaum LS (1999) Effect of prenatal exposure to TCDD on the promotion of endometriotic lesion growth by TCDD in adult female rats and mice. Toxicol Sci 52:45–49

    Article  CAS  PubMed  Google Scholar 

  6. DʼAloisio AA, Deroo LA, Baird DD et al (2013) Prenatal and infant exposures and age at menarche. Epidemiology 24:277–284

    Article  PubMed Central  PubMed  Google Scholar 

  7. European Environment Agency (2001) Late lessons from early warnings: the precautionary principle 1896–2000. European Environment Agency, Kopenhagen

    Google Scholar 

  8. Fernandez M, Bourguignon N, Lux-Lantos V et al (2010) Neonatal exposure to bisphenol A and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 118:1217–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Grande SW, Andrade AJ, Talsness CE et al (2006) A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicol Sci 91:247–254

    Article  CAS  PubMed  Google Scholar 

  10. Greenwald P, Barlow JJ, Nasca PC et al (1971) Vaginal cancer after maternal treatment with synthetic estrogens. N Engl J Med 285:390–392

    Article  CAS  PubMed  Google Scholar 

  11. Grote K, Hobler C, Andrade AJ et al (2009) Sex differences in effects on sexual development in rat offspring after pre- and postnatal exposure to triphenyltin chloride. Toxicology 260:53–59

    Article  CAS  PubMed  Google Scholar 

  12. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881

    Article  CAS  PubMed  Google Scholar 

  13. International Programme on Chemical Safety (2002) Global assessment of the state-of-the-science of endocrine disruptors. World Health Organization, Genf

    Google Scholar 

  14. International Programme on Chemical Safety (2012) State of the science of endocrine disrupting chemicals – 2012. World Health Organization, Genf

    Google Scholar 

  15. Kaufman RH, Adam E (2002) Findings in female offspring of women exposed in utero to diethylstilbestrol. Obstet Gynecol 99:197–200

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman RH, Adam E, Binder GL et al (1980) Upper genital tract changes and pregnancy outcome in offspring exposed in utero to diethylstilbestrol. Am J Obstet Gynecol 137:299–308

    CAS  PubMed  Google Scholar 

  17. Kubo K, Arai O, Omura M et al (2003) Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 45:345–356

    Article  CAS  PubMed  Google Scholar 

  18. Mahalingaiah S, Hart JE, Wise LA et al (2014) Prenatal diethylstilbestrol exposure and risk of uterine leiomyomata in the Nurses' Health Study II. Am J Epidemiol 179:186–191

    Article  PubMed Central  PubMed  Google Scholar 

  19. Missmer SA, Hankinson SE, Spiegelman D et al (2004) In utero exposures and the incidence of endometriosis. Fertil Steril 82:1501–1508

    Article  PubMed  Google Scholar 

  20. Newbold RR (2004) Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 199:142–150

    Article  CAS  PubMed  Google Scholar 

  21. Newbold RR, Hanson RB, Jefferson WN et al (1998) Increased tumors but uncompromised fertility in the female descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis 19:1655–1663

    Article  CAS  PubMed  Google Scholar 

  22. Newbold RR, Moore AB, Dixon D (2002) Characterization of uterine leiomyomas in CD-1 mice following developmental exposure to diethylstilbestrol (DES). Toxicol Pathol 30:611–616

    Article  CAS  PubMed  Google Scholar 

  23. Nikaido Y, Yoshizawa K, Danbara N et al (2004) Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol 18:803–811

    Article  CAS  PubMed  Google Scholar 

  24. Swan SH (2000) Intrauterine exposure to diethylstilbestrol: long-term effects in humans. APMIS 108:793–804

    Article  CAS  PubMed  Google Scholar 

  25. Tachibana T, Wakimoto Y, Nakamuta N et al (2007) Effects of bisphenol A (BPA) on placentation and survival of the neonates in mice. J Reprod Dev 53:509–514

    Article  CAS  PubMed  Google Scholar 

  26. Talsness CE, Shakibaei M, Kuriyama SN et al (2005) Ultrastructural changes observed in rat ovaries following in utero and lactational exposure to low doses of a polybrominated flame retardant. Toxicol Lett 157:189–202

    Article  CAS  PubMed  Google Scholar 

  27. The Practice Committee of the American Society for Reproductive Medicine (2012) Endometriosis and infertility: a committee opinion. Fertil Steril 98:591–598

    Article  Google Scholar 

  28. Titus-Ernstoff L, Troisi R, Hatch EE et al (2010) Birth defects in the sons and daughters of women who were exposed in utero to diethylstilbestrol (DES). Int J Androl 33:377–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Titus-Ernstoff L, Troisi R, Hatch EE et al (2006) Menstrual and reproductive characteristics of women whose mothers were exposed in utero to diethylstilbestrol (DES). Int J Epidemiol 35:862–868

    Article  PubMed  Google Scholar 

  30. Vandenberg LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wise LA, Palmer JR, Rowlings K et al (2005) Risk of benign gynecologic tumors in relation to prenatal diethylstilbestrol exposure. Obstet Gynecol 105:167–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Vogl.

Ethics declarations

Interessenkoflikt

S. Vogl gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

T. Strowitzki, Heidelberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogl, S. Endokrine Disruptoren. Gynäkologische Endokrinologie 13, 150–155 (2015). https://doi.org/10.1007/s10304-015-0026-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-015-0026-2

Schlüsselwörter

Keywords

Navigation